[![Crates.io](https://img.shields.io/crates/v/bevy_gltf_blueprints)](https://crates.io/crates/bevy_gltf_blueprints)
[![Docs](https://img.shields.io/docsrs/bevy_gltf_blueprints)](https://docs.rs/bevy_gltf_blueprints/latest/bevy_gltf_blueprints/)
[![License](https://img.shields.io/crates/l/bevy_gltf_blueprints)](https://github.com/kaosat-dev/Blender_bevy_components_workflow/blob/main/crates/bevy_gltf_blueprints/License.md)
[![Bevy tracking](https://img.shields.io/badge/Bevy%20tracking-released%20version-lightblue)](https://github.com/bevyengine/bevy/blob/main/docs/plugins_guidelines.md#main-branch-tracking)
# bevy_gltf_blueprints
Built upon [bevy_gltf_components](https://crates.io/crates/bevy_gltf_components) this crate adds the ability to define Blueprints/Prefabs for [Bevy](https://bevyengine.org/) inside gltf files and spawn them in Bevy.
* Allows you to create lightweight levels, where all assets are different gltf files and loaded after the main level is loaded
* Allows you to spawn different entities from gtlf files at runtime in a clean manner, including simplified animation support !
A blueprint is a set of **overrideable** components + a hierarchy: ie
* just a Gltf file with Gltf_extras specifying components
* a component called BlueprintName
Particularly useful when using [Blender](https://www.blender.org/) as an editor for the [Bevy](https://bevyengine.org/) game engine, combined with the [Blender plugin](https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/tools/gltf_auto_export) that does a lot of the work for you
## Usage
Here's a minimal usage example:
```toml
# Cargo.toml
[dependencies]
bevy="0.12"
bevy_gltf_blueprints = { version = "0.4"}
```
```rust no_run
use bevy::prelude::*;
use bevy_gltf_blueprints::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugins(BlueprintsPlugin)
.run();
}
// not shown here: any other setup that is not specific to blueprints
fn spawn_blueprint(
mut commands: Commands,
keycode: Res>,
){
if keycode.just_pressed(KeyCode::S) {
let new_entity = commands.spawn((
BlueprintName("Health_Pickup".to_string()), // mandatory !!
SpawnHere, // mandatory !!
TransformBundle::from_transform(Transform::from_xyz(x, 2.0, y)), // VERY important !!
// any other component you want to insert
));
}
}
```
## Installation
Add the following to your `[dependencies]` section in `Cargo.toml`:
```toml
bevy_gltf_blueprints = "0.4"
```
Or use `cargo add`:
```toml
cargo add bevy_gltf_blueprints
```
## Setup
```rust no_run
use bevy::prelude::*;
use bevy_gltf_blueprints::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugin(BlueprintsPlugin)
.run();
}
```
you may want to configure your "library"/"blueprints" settings:
```rust no_run
use bevy::prelude::*;
use bevy_gltf_blueprints::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugin(
BlueprintsPlugin{
library_folder: "advanced/models/library".into() // replace this with your blueprints library path , relative to the assets folder,
format: GltfFormat::GLB,// optional, use either format: GltfFormat::GLB, or format: GltfFormat::GLTF, or ..Default::default() if you want to keep the default .glb extension, this sets what extensions/ gltf files will be looked for by the library
aabbs: true, // defaults to false, enable this to automatically calculate aabb for the scene/blueprint
material_library: true, // defaults to false, enable this to enable automatic injection of materials from material library files
material_library_folder: "materials".into() //defaults to "materials" the folder to look for for the material files
..Default::default()
}
)
.run();
}
```
## Spawning entities from blueprints
You can spawn entities from blueprints like this:
```rust no_run
commands.spawn((
BlueprintName("Health_Pickup".to_string()), // mandatory !!
SpawnHere, // mandatory !!
TransformBundle::from_transform(Transform::from_xyz(x, 2.0, y)), // VERY important !!
// any other component you want to insert
))
```
Once spawning of the actual entity is done, the spawned Blueprint will be *gone/merged* with the contents of Blueprint !
> Important :
you can **add** or **override** components present inside your Blueprint when spawning the BluePrint itself: ie
### Adding components not specified inside the blueprint
you can just add any additional components you need when spawning :
```rust no_run
commands.spawn((
BlueprintName("Health_Pickup".to_string()),
SpawnHere,
TransformBundle::from_transform(Transform::from_xyz(x, 2.0, y)),
// from Rapier/bevy_xpbd: this means the entity will also have a velocity component when inserted into the world
Velocity {
linvel: Vec3::new(vel_x, vel_y, vel_z),
angvel: Vec3::new(0.0, 0.0, 0.0),
},
))
```
### Overriding components specified inside the blueprint
any component you specify when spawning the Blueprint that is also specified **within** the Blueprint will **override** that component in the final spawned entity
for example
```rust no_run
commands.spawn((
BlueprintName("Health_Pickup".to_string()),
SpawnHere,
TransformBundle::from_transform(Transform::from_xyz(x, 2.0, y)),
HealthPowerUp(20)// if this is component is also present inside the "Health_Pickup" blueprint, that one will be replaced with this component during spawning
))
```
### BluePrintBundle
There is also a bundle for convenience , which just has
* a ```BlueprintName``` component
* a ```SpawnHere``` component
* a ```TransformBundle``` sub-bundle (so we know where to spawn)
[```BluePrintBundle```](./src/lib.rs#22)
## SystemSet
the ordering of systems is very important !
For example to replace your proxy components (stand-in components when you cannot/ do not want to use real components in the gltf file) with actual ones, which should happen **AFTER** the Blueprint based spawning,
so ```bevy_gltf_blueprints``` provides a **SystemSet** for that purpose:[```GltfBlueprintsSet```](./src/lib.rs#16)
Typically , the order of systems should be
***bevy_gltf_components (GltfComponentsSet::Injection)*** => ***bevy_gltf_blueprints (GltfBlueprintsSet::Spawn, GltfBlueprintsSet::AfterSpawn)*** => ***replace_proxies***
see https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/examples/bevy_gltf_blueprints/basic for how to set it up correctly
## Animation
```bevy_gltf_blueprints``` provides some lightweight helpers to deal with animations stored in gltf files
* an ```Animations``` component that gets inserted into spawned (root) entities that contains a hashmap of all animations contained inside that entity/gltf file .
(this is a copy of the ```named_animations``` inside Bevy's gltf structures )
* an ```AnimationPlayerLink``` component that gets inserted into spawned (root) entities, to make it easier to trigger/ control animations than it usually is inside Bevy + Gltf files
The workflow for animations is as follows:
* create a gltf file with animations (using Blender & co) as you would normally do
* inside Bevy, use the ```bevy_gltf_blueprints``` boilerplate (see sections above), no specific setup beyond that is required
* to control the animation of an entity, you need to query for entities that have both ```AnimationPlayerLink``` and ```Animations``` components (added by ```bevy_gltf_blueprints```) AND entities with the ```AnimationPlayer``` component
For example:
```rust no_run
// example of changing animation of entities based on proximity to the player, for "fox" entities (Tag component)
pub fn animation_change_on_proximity_foxes(
players: Query<&GlobalTransform, With>,
animated_foxes: Query<(&GlobalTransform, &AnimationPlayerLink, &Animations ), With>,
mut animation_players: Query<&mut AnimationPlayer>,
){
for player_transforms in players.iter() {
for (fox_tranforms, link, animations) in animated_foxes.iter() {
let distance = player_transforms
.translation()
.distance(fox_tranforms.translation());
let mut anim_name = "Walk";
if distance < 8.5 {
anim_name = "Run";
}
else if distance >= 8.5 && distance < 10.0{
anim_name = "Walk";
}
else if distance >= 10.0 && distance < 15.0{
anim_name = "Survey";
}
// now play the animation based on the chosen animation name
let mut animation_player = animation_players.get_mut(link.0).unwrap();
animation_player.play_with_transition(
animations.named_animations.get(anim_name).expect("animation name should be in the list").clone(),
Duration::from_secs(3)
).repeat();
}
}
}
```
see https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/examples/animation for how to set it up correctly
particularly from https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/examples/animation/game/in_game.rs#86
onward
## Materials
You have the option of using "material libraries" to share common textures/materials between blueprints, in order to avoid asset & memory bloat:
Ie for example without this option, 56 different blueprints using the same material with a large texture would lead to the material/texture being embeded
56 times !!
you can configure this with the settings:
```rust
material_library: true // defaults to false, enable this to enable automatic injection of materials from material library files
material_library_folder: "materials".into() //defaults to "materials" the folder to look for for the material files
```
> Important! you must take care of preloading your material librairy gltf files in advance, using for example ```bevy_asset_loader```since
```bevy_gltf_blueprints``` currently does NOT take care of loading those at runtime
see https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/examples/materials for how to set it up correctly
Generating optimised blueprints and material libraries can be automated using the latests version of the [Blender plugin](https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/tools/gltf_auto_export)
## Examples
https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/examples/basic
https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/examples/basic_xpbd_physics
https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/examples/basic_scene_components
https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/examples/animation
https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/examples/multiple_levels
https://github.com/kaosat-dev/Blender_bevy_components_workflow/tree/main/examples/materials
## Compatible Bevy versions
The main branch is compatible with the latest Bevy release, while the branch `bevy_main` tries to track the `main` branch of Bevy (PRs updating the tracked commit are welcome).
Compatibility of `bevy_gltf_blueprints` versions:
| `bevy_gltf_blueprints` | `bevy` |
| :-- | :-- |
| `0.3 - 0.4` | `0.12` |
| `0.1 - 0.2` | `0.11` |
| branch `main` | `0.12` |
| branch `bevy_main` | `main` |
## License
This crate, all its code, contents & assets is Dual-licensed under either of
- Apache License, Version 2.0, ([LICENSE-APACHE](./LICENSE_APACHE.md) or https://www.apache.org/licenses/LICENSE-2.0)
- MIT license ([LICENSE-MIT](./LICENSE_MIT.md) or https://opensource.org/licenses/MIT)