core: hle: kernel: Update KAddressArbiter.

This commit is contained in:
bunnei 2020-12-29 23:18:06 -08:00
parent b4e6d6c385
commit 952d1ac487
3 changed files with 437 additions and 0 deletions

View File

@ -157,6 +157,8 @@ add_library(core STATIC
hle/kernel/handle_table.h
hle/kernel/hle_ipc.cpp
hle/kernel/hle_ipc.h
hle/kernel/k_address_arbiter.cpp
hle/kernel/k_address_arbiter.h
hle/kernel/k_affinity_mask.h
hle/kernel/k_condition_variable.cpp
hle/kernel/k_condition_variable.h

View File

@ -0,0 +1,365 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/memory.h"
namespace Kernel {
KAddressArbiter::KAddressArbiter(Core::System& system_)
: system{system_}, kernel{system.Kernel()} {}
KAddressArbiter::~KAddressArbiter() = default;
namespace {
bool ReadFromUser(Core::System& system, s32* out, VAddr address) {
*out = system.Memory().Read32(address);
return true;
}
bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 value) {
auto& monitor = system.Monitor();
const auto current_core = system.CurrentCoreIndex();
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
// TODO(bunnei): We should call CanAccessAtomic(..) here.
// Load the value from the address.
const s32 current_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
// Compare it to the desired one.
if (current_value < value) {
// If less than, we want to try to decrement.
const s32 decrement_value = current_value - 1;
// Decrement and try to store.
if (!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(decrement_value))) {
// If we failed to store, try again.
DecrementIfLessThan(system, out, address, value);
}
} else {
// Otherwise, clear our exclusive hold and finish
monitor.ClearExclusive();
}
// We're done.
*out = current_value;
return true;
}
bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32 new_value) {
auto& monitor = system.Monitor();
const auto current_core = system.CurrentCoreIndex();
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
// TODO(bunnei): We should call CanAccessAtomic(..) here.
// Load the value from the address.
const s32 current_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
// Compare it to the desired one.
if (current_value == value) {
// If equal, we want to try to write the new value.
// Try to store.
if (!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(new_value))) {
// If we failed to store, try again.
UpdateIfEqual(system, out, address, value, new_value);
}
} else {
// Otherwise, clear our exclusive hold and finish.
monitor.ClearExclusive();
}
// We're done.
*out = current_value;
return true;
}
} // namespace
ResultCode KAddressArbiter::Signal(VAddr addr, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
auto it = thread_tree.nfind_light({addr, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
Thread* target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->Wakeup();
it = thread_tree.erase(it);
target_thread->ClearAddressArbiter();
++num_waiters;
}
}
return RESULT_SUCCESS;
}
ResultCode KAddressArbiter::SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
// Check the userspace value.
s32 user_value{};
R_UNLESS(UpdateIfEqual(system, std::addressof(user_value), addr, value, value + 1),
Svc::ResultInvalidCurrentMemory);
R_UNLESS(user_value == value, Svc::ResultInvalidState);
auto it = thread_tree.nfind_light({addr, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
Thread* target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->Wakeup();
it = thread_tree.erase(it);
target_thread->ClearAddressArbiter();
++num_waiters;
}
}
return RESULT_SUCCESS;
}
ResultCode KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
auto it = thread_tree.nfind_light({addr, -1});
// Determine the updated value.
s32 new_value{};
if (/*GetTargetFirmware() >= TargetFirmware_7_0_0*/ true) {
if (count <= 0) {
if ((it != thread_tree.end()) && (it->GetAddressArbiterKey() == addr)) {
new_value = value - 2;
} else {
new_value = value + 1;
}
} else {
if ((it != thread_tree.end()) && (it->GetAddressArbiterKey() == addr)) {
auto tmp_it = it;
s32 tmp_num_waiters{};
while ((++tmp_it != thread_tree.end()) &&
(tmp_it->GetAddressArbiterKey() == addr)) {
if ((tmp_num_waiters++) >= count) {
break;
}
}
if (tmp_num_waiters < count) {
new_value = value - 1;
} else {
new_value = value;
}
} else {
new_value = value + 1;
}
}
} else {
if (count <= 0) {
if ((it != thread_tree.end()) && (it->GetAddressArbiterKey() == addr)) {
new_value = value - 1;
} else {
new_value = value + 1;
}
} else {
auto tmp_it = it;
s32 tmp_num_waiters{};
while ((tmp_it != thread_tree.end()) && (tmp_it->GetAddressArbiterKey() == addr) &&
(tmp_num_waiters < count + 1)) {
++tmp_num_waiters;
++tmp_it;
}
if (tmp_num_waiters == 0) {
new_value = value + 1;
} else if (tmp_num_waiters <= count) {
new_value = value - 1;
} else {
new_value = value;
}
}
}
// Check the userspace value.
s32 user_value{};
bool succeeded{};
if (value != new_value) {
succeeded = UpdateIfEqual(system, std::addressof(user_value), addr, value, new_value);
} else {
succeeded = ReadFromUser(system, std::addressof(user_value), addr);
}
R_UNLESS(succeeded, Svc::ResultInvalidCurrentMemory);
R_UNLESS(user_value == value, Svc::ResultInvalidState);
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
Thread* target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->Wakeup();
it = thread_tree.erase(it);
target_thread->ClearAddressArbiter();
++num_waiters;
}
}
return RESULT_SUCCESS;
}
ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
// Prepare to wait.
Thread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout);
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return Svc::ResultTerminationRequested;
}
// Set the synced object.
cur_thread->SetSyncedObject(nullptr, Svc::ResultTimedOut);
// Read the value from userspace.
s32 user_value{};
bool succeeded{};
if (decrement) {
succeeded = DecrementIfLessThan(system, std::addressof(user_value), addr, value);
} else {
succeeded = ReadFromUser(system, std::addressof(user_value), addr);
}
if (!succeeded) {
slp.CancelSleep();
return Svc::ResultInvalidCurrentMemory;
}
// Check that the value is less than the specified one.
if (user_value >= value) {
slp.CancelSleep();
return Svc::ResultInvalidState;
}
// Check that the timeout is non-zero.
if (timeout == 0) {
slp.CancelSleep();
return Svc::ResultTimedOut;
}
// Set the arbiter.
cur_thread->SetAddressArbiter(std::addressof(thread_tree), addr);
thread_tree.insert(*cur_thread);
cur_thread->SetState(ThreadState::Waiting);
}
// Cancel the timer wait.
if (timer != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
// Remove from the address arbiter.
{
KScopedSchedulerLock sl(kernel);
if (cur_thread->IsWaitingForAddressArbiter()) {
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
cur_thread->ClearAddressArbiter();
}
}
// Get the result.
KSynchronizationObject* dummy{};
return cur_thread->GetWaitResult(std::addressof(dummy));
}
ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
// Prepare to wait.
Thread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout);
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return Svc::ResultTerminationRequested;
}
// Set the synced object.
cur_thread->SetSyncedObject(nullptr, Svc::ResultTimedOut);
// Read the value from userspace.
s32 user_value{};
if (!ReadFromUser(system, std::addressof(user_value), addr)) {
slp.CancelSleep();
return Svc::ResultInvalidCurrentMemory;
}
// Check that the value is equal.
if (value != user_value) {
slp.CancelSleep();
return Svc::ResultInvalidState;
}
// Check that the timeout is non-zero.
if (timeout == 0) {
slp.CancelSleep();
return Svc::ResultTimedOut;
}
// Set the arbiter.
cur_thread->SetAddressArbiter(std::addressof(thread_tree), addr);
thread_tree.insert(*cur_thread);
cur_thread->SetState(ThreadState::Waiting);
}
// Cancel the timer wait.
if (timer != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
// Remove from the address arbiter.
{
KScopedSchedulerLock sl(kernel);
if (cur_thread->IsWaitingForAddressArbiter()) {
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
cur_thread->ClearAddressArbiter();
}
}
// Get the result.
KSynchronizationObject* dummy{};
return cur_thread->GetWaitResult(std::addressof(dummy));
}
} // namespace Kernel

View File

@ -0,0 +1,70 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/assert.h"
#include "common/common_types.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/svc_types.h"
union ResultCode;
namespace Core {
class System;
}
namespace Kernel {
class KernelCore;
class KAddressArbiter {
public:
using ThreadTree = KConditionVariable::ThreadTree;
explicit KAddressArbiter(Core::System& system_);
~KAddressArbiter();
[[nodiscard]] ResultCode SignalToAddress(VAddr addr, Svc::SignalType type, s32 value,
s32 count) {
switch (type) {
case Svc::SignalType::Signal:
return Signal(addr, count);
case Svc::SignalType::SignalAndIncrementIfEqual:
return SignalAndIncrementIfEqual(addr, value, count);
case Svc::SignalType::SignalAndModifyByWaitingCountIfEqual:
return SignalAndModifyByWaitingCountIfEqual(addr, value, count);
}
UNREACHABLE();
return RESULT_UNKNOWN;
}
[[nodiscard]] ResultCode WaitForAddress(VAddr addr, Svc::ArbitrationType type, s32 value,
s64 timeout) {
switch (type) {
case Svc::ArbitrationType::WaitIfLessThan:
return WaitIfLessThan(addr, value, false, timeout);
case Svc::ArbitrationType::DecrementAndWaitIfLessThan:
return WaitIfLessThan(addr, value, true, timeout);
case Svc::ArbitrationType::WaitIfEqual:
return WaitIfEqual(addr, value, timeout);
}
UNREACHABLE();
return RESULT_UNKNOWN;
}
private:
[[nodiscard]] ResultCode Signal(VAddr addr, s32 count);
[[nodiscard]] ResultCode SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count);
[[nodiscard]] ResultCode SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count);
[[nodiscard]] ResultCode WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout);
[[nodiscard]] ResultCode WaitIfEqual(VAddr addr, s32 value, s64 timeout);
ThreadTree thread_tree;
Core::System& system;
KernelCore& kernel;
};
} // namespace Kernel