hle: kernel: TimeManager: Simplify to not rely on previous EmuThreadHandle implementation.

This commit is contained in:
bunnei 2021-01-19 21:05:24 -08:00
parent bb966d3e33
commit c0f5830323
6 changed files with 25 additions and 69 deletions

View File

@ -232,10 +232,9 @@ ResultCode KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32
ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
// Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout);
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
@ -280,10 +279,7 @@ ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement
}
// Cancel the timer wait.
if (timer != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
// Remove from the address arbiter.
{
@ -303,10 +299,9 @@ ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement
ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
// Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout);
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
@ -344,10 +339,7 @@ ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
}
// Cancel the timer wait.
if (timer != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
// Remove from the address arbiter.
{

View File

@ -258,10 +258,9 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
// Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout);
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
// Set the synced object.
cur_thread->SetSyncedObject(nullptr, Svc::ResultTimedOut);
@ -322,10 +321,7 @@ ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout)
}
// Cancel the timer wait.
if (timer != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
// Remove from the condition variable.
{

View File

@ -17,19 +17,16 @@ namespace Kernel {
class KScopedSchedulerLockAndSleep {
public:
explicit KScopedSchedulerLockAndSleep(KernelCore& kernel, Handle& event_handle, KThread* t,
s64 timeout)
: kernel(kernel), event_handle(event_handle), thread(t), timeout_tick(timeout) {
event_handle = InvalidHandle;
explicit KScopedSchedulerLockAndSleep(KernelCore& kernel, KThread* t, s64 timeout)
: kernel(kernel), thread(t), timeout_tick(timeout) {
// Lock the scheduler.
kernel.GlobalSchedulerContext().scheduler_lock.Lock();
}
~KScopedSchedulerLockAndSleep() {
// Register the sleep.
if (this->timeout_tick > 0) {
kernel.TimeManager().ScheduleTimeEvent(event_handle, this->thread, this->timeout_tick);
if (timeout_tick > 0) {
kernel.TimeManager().ScheduleTimeEvent(thread, timeout_tick);
}
// Unlock the scheduler.
@ -37,12 +34,11 @@ public:
}
void CancelSleep() {
this->timeout_tick = 0;
timeout_tick = 0;
}
private:
KernelCore& kernel;
Handle& event_handle;
KThread* thread{};
s64 timeout_tick{};
};

View File

@ -21,11 +21,10 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel, s32* out_index,
// Prepare for wait.
KThread* thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{
// Setup the scheduling lock and sleep.
KScopedSchedulerLockAndSleep slp(kernel, timer, thread, timeout);
KScopedSchedulerLockAndSleep slp{kernel, thread, timeout};
// Check if any of the objects are already signaled.
for (auto i = 0; i < num_objects; ++i) {
@ -90,10 +89,7 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel, s32* out_index,
thread->SetWaitObjectsForDebugging({});
// Cancel the timer as needed.
if (timer != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
kernel.TimeManager().UnscheduleTimeEvent(thread);
// Get the wait result.
ResultCode wait_result{RESULT_SUCCESS};

View File

@ -21,47 +21,27 @@ TimeManager::TimeManager(Core::System& system_) : system{system_} {
std::shared_ptr<KThread> thread;
{
std::lock_guard lock{mutex};
const auto proper_handle = static_cast<Handle>(thread_handle);
if (cancelled_events[proper_handle]) {
return;
}
thread = system.Kernel().RetrieveThreadFromGlobalHandleTable(proper_handle);
}
if (thread) {
// Thread can be null if process has exited
thread->Wakeup();
thread = SharedFrom<KThread>(reinterpret_cast<KThread*>(thread_handle));
}
thread->Wakeup();
});
}
void TimeManager::ScheduleTimeEvent(Handle& event_handle, KThread* timetask, s64 nanoseconds) {
void TimeManager::ScheduleTimeEvent(KThread* thread, s64 nanoseconds) {
std::lock_guard lock{mutex};
event_handle = timetask->GetGlobalHandle();
if (nanoseconds > 0) {
ASSERT(timetask);
ASSERT(timetask->GetState() != ThreadState::Runnable);
ASSERT(thread);
ASSERT(thread->GetState() != ThreadState::Runnable);
system.CoreTiming().ScheduleEvent(std::chrono::nanoseconds{nanoseconds},
time_manager_event_type, event_handle);
} else {
event_handle = InvalidHandle;
time_manager_event_type,
reinterpret_cast<uintptr_t>(thread));
}
cancelled_events[event_handle] = false;
}
void TimeManager::UnscheduleTimeEvent(Handle event_handle) {
void TimeManager::UnscheduleTimeEvent(KThread* thread) {
std::lock_guard lock{mutex};
if (event_handle == InvalidHandle) {
return;
}
system.CoreTiming().UnscheduleEvent(time_manager_event_type, event_handle);
cancelled_events[event_handle] = true;
}
void TimeManager::CancelTimeEvent(KThread* time_task) {
std::lock_guard lock{mutex};
const Handle event_handle = time_task->GetGlobalHandle();
UnscheduleTimeEvent(event_handle);
system.CoreTiming().UnscheduleEvent(time_manager_event_type,
reinterpret_cast<uintptr_t>(thread));
}
} // namespace Kernel

View File

@ -31,18 +31,14 @@ public:
explicit TimeManager(Core::System& system);
/// Schedule a time event on `timetask` thread that will expire in 'nanoseconds'
/// returns a non-invalid handle in `event_handle` if correctly scheduled
void ScheduleTimeEvent(Handle& event_handle, KThread* timetask, s64 nanoseconds);
void ScheduleTimeEvent(KThread* time_task, s64 nanoseconds);
/// Unschedule an existing time event
void UnscheduleTimeEvent(Handle event_handle);
void CancelTimeEvent(KThread* time_task);
void UnscheduleTimeEvent(KThread* thread);
private:
Core::System& system;
std::shared_ptr<Core::Timing::EventType> time_manager_event_type;
std::unordered_map<Handle, bool> cancelled_events;
std::mutex mutex;
};