Merge pull request #5266 from bunnei/kernel-synch

Rewrite KSynchronizationObject, KConditonVariable, and KAddressArbiter
This commit is contained in:
bunnei 2021-01-11 14:36:26 -08:00 committed by GitHub
commit eb3cb54aa5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
56 changed files with 3589 additions and 1914 deletions

View File

@ -123,6 +123,7 @@ add_library(common STATIC
hash.h
hex_util.cpp
hex_util.h
intrusive_red_black_tree.h
logging/backend.cpp
logging/backend.h
logging/filter.cpp
@ -143,6 +144,7 @@ add_library(common STATIC
page_table.h
param_package.cpp
param_package.h
parent_of_member.h
quaternion.h
ring_buffer.h
scm_rev.cpp
@ -167,6 +169,7 @@ add_library(common STATIC
time_zone.h
timer.cpp
timer.h
tree.h
uint128.cpp
uint128.h
uuid.cpp

View File

@ -93,6 +93,14 @@ __declspec(dllimport) void __stdcall DebugBreak(void);
return static_cast<T>(key) == 0; \
}
/// Evaluates a boolean expression, and returns a result unless that expression is true.
#define R_UNLESS(expr, res) \
{ \
if (!(expr)) { \
return res; \
} \
}
namespace Common {
[[nodiscard]] constexpr u32 MakeMagic(char a, char b, char c, char d) {

View File

@ -0,0 +1,627 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/parent_of_member.h"
#include "common/tree.h"
namespace Common {
namespace impl {
class IntrusiveRedBlackTreeImpl;
}
struct IntrusiveRedBlackTreeNode {
private:
RB_ENTRY(IntrusiveRedBlackTreeNode) entry{};
friend class impl::IntrusiveRedBlackTreeImpl;
template <class, class, class>
friend class IntrusiveRedBlackTree;
public:
constexpr IntrusiveRedBlackTreeNode() = default;
};
template <class T, class Traits, class Comparator>
class IntrusiveRedBlackTree;
namespace impl {
class IntrusiveRedBlackTreeImpl {
private:
template <class, class, class>
friend class ::Common::IntrusiveRedBlackTree;
private:
RB_HEAD(IntrusiveRedBlackTreeRoot, IntrusiveRedBlackTreeNode);
using RootType = IntrusiveRedBlackTreeRoot;
private:
IntrusiveRedBlackTreeRoot root;
public:
template <bool Const>
class Iterator;
using value_type = IntrusiveRedBlackTreeNode;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = Iterator<false>;
using const_iterator = Iterator<true>;
template <bool Const>
class Iterator {
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = typename IntrusiveRedBlackTreeImpl::value_type;
using difference_type = typename IntrusiveRedBlackTreeImpl::difference_type;
using pointer = std::conditional_t<Const, IntrusiveRedBlackTreeImpl::const_pointer,
IntrusiveRedBlackTreeImpl::pointer>;
using reference = std::conditional_t<Const, IntrusiveRedBlackTreeImpl::const_reference,
IntrusiveRedBlackTreeImpl::reference>;
private:
pointer node;
public:
explicit Iterator(pointer n) : node(n) {}
bool operator==(const Iterator& rhs) const {
return this->node == rhs.node;
}
bool operator!=(const Iterator& rhs) const {
return !(*this == rhs);
}
pointer operator->() const {
return this->node;
}
reference operator*() const {
return *this->node;
}
Iterator& operator++() {
this->node = GetNext(this->node);
return *this;
}
Iterator& operator--() {
this->node = GetPrev(this->node);
return *this;
}
Iterator operator++(int) {
const Iterator it{*this};
++(*this);
return it;
}
Iterator operator--(int) {
const Iterator it{*this};
--(*this);
return it;
}
operator Iterator<true>() const {
return Iterator<true>(this->node);
}
};
protected:
// Generate static implementations for non-comparison operations for IntrusiveRedBlackTreeRoot.
RB_GENERATE_WITHOUT_COMPARE_STATIC(IntrusiveRedBlackTreeRoot, IntrusiveRedBlackTreeNode, entry);
private:
// Define accessors using RB_* functions.
constexpr void InitializeImpl() {
RB_INIT(&this->root);
}
bool EmptyImpl() const {
return RB_EMPTY(&this->root);
}
IntrusiveRedBlackTreeNode* GetMinImpl() const {
return RB_MIN(IntrusiveRedBlackTreeRoot,
const_cast<IntrusiveRedBlackTreeRoot*>(&this->root));
}
IntrusiveRedBlackTreeNode* GetMaxImpl() const {
return RB_MAX(IntrusiveRedBlackTreeRoot,
const_cast<IntrusiveRedBlackTreeRoot*>(&this->root));
}
IntrusiveRedBlackTreeNode* RemoveImpl(IntrusiveRedBlackTreeNode* node) {
return RB_REMOVE(IntrusiveRedBlackTreeRoot, &this->root, node);
}
public:
static IntrusiveRedBlackTreeNode* GetNext(IntrusiveRedBlackTreeNode* node) {
return RB_NEXT(IntrusiveRedBlackTreeRoot, nullptr, node);
}
static IntrusiveRedBlackTreeNode* GetPrev(IntrusiveRedBlackTreeNode* node) {
return RB_PREV(IntrusiveRedBlackTreeRoot, nullptr, node);
}
static IntrusiveRedBlackTreeNode const* GetNext(const IntrusiveRedBlackTreeNode* node) {
return static_cast<const IntrusiveRedBlackTreeNode*>(
GetNext(const_cast<IntrusiveRedBlackTreeNode*>(node)));
}
static IntrusiveRedBlackTreeNode const* GetPrev(const IntrusiveRedBlackTreeNode* node) {
return static_cast<const IntrusiveRedBlackTreeNode*>(
GetPrev(const_cast<IntrusiveRedBlackTreeNode*>(node)));
}
public:
constexpr IntrusiveRedBlackTreeImpl() : root() {
this->InitializeImpl();
}
// Iterator accessors.
iterator begin() {
return iterator(this->GetMinImpl());
}
const_iterator begin() const {
return const_iterator(this->GetMinImpl());
}
iterator end() {
return iterator(static_cast<IntrusiveRedBlackTreeNode*>(nullptr));
}
const_iterator end() const {
return const_iterator(static_cast<const IntrusiveRedBlackTreeNode*>(nullptr));
}
const_iterator cbegin() const {
return this->begin();
}
const_iterator cend() const {
return this->end();
}
iterator iterator_to(reference ref) {
return iterator(&ref);
}
const_iterator iterator_to(const_reference ref) const {
return const_iterator(&ref);
}
// Content management.
bool empty() const {
return this->EmptyImpl();
}
reference back() {
return *this->GetMaxImpl();
}
const_reference back() const {
return *this->GetMaxImpl();
}
reference front() {
return *this->GetMinImpl();
}
const_reference front() const {
return *this->GetMinImpl();
}
iterator erase(iterator it) {
auto cur = std::addressof(*it);
auto next = GetNext(cur);
this->RemoveImpl(cur);
return iterator(next);
}
};
} // namespace impl
template <typename T>
concept HasLightCompareType = requires {
{ std::is_same<typename T::LightCompareType, void>::value }
->std::convertible_to<bool>;
};
namespace impl {
template <typename T, typename Default>
consteval auto* GetLightCompareType() {
if constexpr (HasLightCompareType<T>) {
return static_cast<typename T::LightCompareType*>(nullptr);
} else {
return static_cast<Default*>(nullptr);
}
}
} // namespace impl
template <typename T, typename Default>
using LightCompareType = std::remove_pointer_t<decltype(impl::GetLightCompareType<T, Default>())>;
template <class T, class Traits, class Comparator>
class IntrusiveRedBlackTree {
public:
using ImplType = impl::IntrusiveRedBlackTreeImpl;
private:
ImplType impl{};
public:
struct IntrusiveRedBlackTreeRootWithCompare : ImplType::IntrusiveRedBlackTreeRoot {};
template <bool Const>
class Iterator;
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using iterator = Iterator<false>;
using const_iterator = Iterator<true>;
using light_value_type = LightCompareType<Comparator, value_type>;
using const_light_pointer = const light_value_type*;
using const_light_reference = const light_value_type&;
template <bool Const>
class Iterator {
public:
friend class IntrusiveRedBlackTree<T, Traits, Comparator>;
using ImplIterator =
std::conditional_t<Const, ImplType::const_iterator, ImplType::iterator>;
using iterator_category = std::bidirectional_iterator_tag;
using value_type = typename IntrusiveRedBlackTree::value_type;
using difference_type = typename IntrusiveRedBlackTree::difference_type;
using pointer = std::conditional_t<Const, IntrusiveRedBlackTree::const_pointer,
IntrusiveRedBlackTree::pointer>;
using reference = std::conditional_t<Const, IntrusiveRedBlackTree::const_reference,
IntrusiveRedBlackTree::reference>;
private:
ImplIterator iterator;
private:
explicit Iterator(ImplIterator it) : iterator(it) {}
explicit Iterator(typename std::conditional<Const, ImplType::const_iterator,
ImplType::iterator>::type::pointer ptr)
: iterator(ptr) {}
ImplIterator GetImplIterator() const {
return this->iterator;
}
public:
bool operator==(const Iterator& rhs) const {
return this->iterator == rhs.iterator;
}
bool operator!=(const Iterator& rhs) const {
return !(*this == rhs);
}
pointer operator->() const {
return Traits::GetParent(std::addressof(*this->iterator));
}
reference operator*() const {
return *Traits::GetParent(std::addressof(*this->iterator));
}
Iterator& operator++() {
++this->iterator;
return *this;
}
Iterator& operator--() {
--this->iterator;
return *this;
}
Iterator operator++(int) {
const Iterator it{*this};
++this->iterator;
return it;
}
Iterator operator--(int) {
const Iterator it{*this};
--this->iterator;
return it;
}
operator Iterator<true>() const {
return Iterator<true>(this->iterator);
}
};
private:
// Generate static implementations for comparison operations for IntrusiveRedBlackTreeRoot.
RB_GENERATE_WITH_COMPARE_STATIC(IntrusiveRedBlackTreeRootWithCompare, IntrusiveRedBlackTreeNode,
entry, CompareImpl, LightCompareImpl);
private:
static int CompareImpl(const IntrusiveRedBlackTreeNode* lhs,
const IntrusiveRedBlackTreeNode* rhs) {
return Comparator::Compare(*Traits::GetParent(lhs), *Traits::GetParent(rhs));
}
static int LightCompareImpl(const void* elm, const IntrusiveRedBlackTreeNode* rhs) {
return Comparator::Compare(*static_cast<const_light_pointer>(elm), *Traits::GetParent(rhs));
}
// Define accessors using RB_* functions.
IntrusiveRedBlackTreeNode* InsertImpl(IntrusiveRedBlackTreeNode* node) {
return RB_INSERT(IntrusiveRedBlackTreeRootWithCompare,
static_cast<IntrusiveRedBlackTreeRootWithCompare*>(&this->impl.root),
node);
}
IntrusiveRedBlackTreeNode* FindImpl(const IntrusiveRedBlackTreeNode* node) const {
return RB_FIND(
IntrusiveRedBlackTreeRootWithCompare,
const_cast<IntrusiveRedBlackTreeRootWithCompare*>(
static_cast<const IntrusiveRedBlackTreeRootWithCompare*>(&this->impl.root)),
const_cast<IntrusiveRedBlackTreeNode*>(node));
}
IntrusiveRedBlackTreeNode* NFindImpl(const IntrusiveRedBlackTreeNode* node) const {
return RB_NFIND(
IntrusiveRedBlackTreeRootWithCompare,
const_cast<IntrusiveRedBlackTreeRootWithCompare*>(
static_cast<const IntrusiveRedBlackTreeRootWithCompare*>(&this->impl.root)),
const_cast<IntrusiveRedBlackTreeNode*>(node));
}
IntrusiveRedBlackTreeNode* FindLightImpl(const_light_pointer lelm) const {
return RB_FIND_LIGHT(
IntrusiveRedBlackTreeRootWithCompare,
const_cast<IntrusiveRedBlackTreeRootWithCompare*>(
static_cast<const IntrusiveRedBlackTreeRootWithCompare*>(&this->impl.root)),
static_cast<const void*>(lelm));
}
IntrusiveRedBlackTreeNode* NFindLightImpl(const_light_pointer lelm) const {
return RB_NFIND_LIGHT(
IntrusiveRedBlackTreeRootWithCompare,
const_cast<IntrusiveRedBlackTreeRootWithCompare*>(
static_cast<const IntrusiveRedBlackTreeRootWithCompare*>(&this->impl.root)),
static_cast<const void*>(lelm));
}
public:
constexpr IntrusiveRedBlackTree() = default;
// Iterator accessors.
iterator begin() {
return iterator(this->impl.begin());
}
const_iterator begin() const {
return const_iterator(this->impl.begin());
}
iterator end() {
return iterator(this->impl.end());
}
const_iterator end() const {
return const_iterator(this->impl.end());
}
const_iterator cbegin() const {
return this->begin();
}
const_iterator cend() const {
return this->end();
}
iterator iterator_to(reference ref) {
return iterator(this->impl.iterator_to(*Traits::GetNode(std::addressof(ref))));
}
const_iterator iterator_to(const_reference ref) const {
return const_iterator(this->impl.iterator_to(*Traits::GetNode(std::addressof(ref))));
}
// Content management.
bool empty() const {
return this->impl.empty();
}
reference back() {
return *Traits::GetParent(std::addressof(this->impl.back()));
}
const_reference back() const {
return *Traits::GetParent(std::addressof(this->impl.back()));
}
reference front() {
return *Traits::GetParent(std::addressof(this->impl.front()));
}
const_reference front() const {
return *Traits::GetParent(std::addressof(this->impl.front()));
}
iterator erase(iterator it) {
return iterator(this->impl.erase(it.GetImplIterator()));
}
iterator insert(reference ref) {
ImplType::pointer node = Traits::GetNode(std::addressof(ref));
this->InsertImpl(node);
return iterator(node);
}
iterator find(const_reference ref) const {
return iterator(this->FindImpl(Traits::GetNode(std::addressof(ref))));
}
iterator nfind(const_reference ref) const {
return iterator(this->NFindImpl(Traits::GetNode(std::addressof(ref))));
}
iterator find_light(const_light_reference ref) const {
return iterator(this->FindLightImpl(std::addressof(ref)));
}
iterator nfind_light(const_light_reference ref) const {
return iterator(this->NFindLightImpl(std::addressof(ref)));
}
};
template <auto T, class Derived = impl::GetParentType<T>>
class IntrusiveRedBlackTreeMemberTraits;
template <class Parent, IntrusiveRedBlackTreeNode Parent::*Member, class Derived>
class IntrusiveRedBlackTreeMemberTraits<Member, Derived> {
public:
template <class Comparator>
using TreeType = IntrusiveRedBlackTree<Derived, IntrusiveRedBlackTreeMemberTraits, Comparator>;
using TreeTypeImpl = impl::IntrusiveRedBlackTreeImpl;
private:
template <class, class, class>
friend class IntrusiveRedBlackTree;
friend class impl::IntrusiveRedBlackTreeImpl;
static constexpr IntrusiveRedBlackTreeNode* GetNode(Derived* parent) {
return std::addressof(parent->*Member);
}
static constexpr IntrusiveRedBlackTreeNode const* GetNode(Derived const* parent) {
return std::addressof(parent->*Member);
}
static constexpr Derived* GetParent(IntrusiveRedBlackTreeNode* node) {
return GetParentPointer<Member, Derived>(node);
}
static constexpr Derived const* GetParent(const IntrusiveRedBlackTreeNode* node) {
return GetParentPointer<Member, Derived>(node);
}
private:
static constexpr TYPED_STORAGE(Derived) DerivedStorage = {};
static_assert(GetParent(GetNode(GetPointer(DerivedStorage))) == GetPointer(DerivedStorage));
};
template <auto T, class Derived = impl::GetParentType<T>>
class IntrusiveRedBlackTreeMemberTraitsDeferredAssert;
template <class Parent, IntrusiveRedBlackTreeNode Parent::*Member, class Derived>
class IntrusiveRedBlackTreeMemberTraitsDeferredAssert<Member, Derived> {
public:
template <class Comparator>
using TreeType =
IntrusiveRedBlackTree<Derived, IntrusiveRedBlackTreeMemberTraitsDeferredAssert, Comparator>;
using TreeTypeImpl = impl::IntrusiveRedBlackTreeImpl;
static constexpr bool IsValid() {
TYPED_STORAGE(Derived) DerivedStorage = {};
return GetParent(GetNode(GetPointer(DerivedStorage))) == GetPointer(DerivedStorage);
}
private:
template <class, class, class>
friend class IntrusiveRedBlackTree;
friend class impl::IntrusiveRedBlackTreeImpl;
static constexpr IntrusiveRedBlackTreeNode* GetNode(Derived* parent) {
return std::addressof(parent->*Member);
}
static constexpr IntrusiveRedBlackTreeNode const* GetNode(Derived const* parent) {
return std::addressof(parent->*Member);
}
static constexpr Derived* GetParent(IntrusiveRedBlackTreeNode* node) {
return GetParentPointer<Member, Derived>(node);
}
static constexpr Derived const* GetParent(const IntrusiveRedBlackTreeNode* node) {
return GetParentPointer<Member, Derived>(node);
}
};
template <class Derived>
class IntrusiveRedBlackTreeBaseNode : public IntrusiveRedBlackTreeNode {
public:
constexpr Derived* GetPrev() {
return static_cast<Derived*>(impl::IntrusiveRedBlackTreeImpl::GetPrev(this));
}
constexpr const Derived* GetPrev() const {
return static_cast<const Derived*>(impl::IntrusiveRedBlackTreeImpl::GetPrev(this));
}
constexpr Derived* GetNext() {
return static_cast<Derived*>(impl::IntrusiveRedBlackTreeImpl::GetNext(this));
}
constexpr const Derived* GetNext() const {
return static_cast<const Derived*>(impl::IntrusiveRedBlackTreeImpl::GetNext(this));
}
};
template <class Derived>
class IntrusiveRedBlackTreeBaseTraits {
public:
template <class Comparator>
using TreeType = IntrusiveRedBlackTree<Derived, IntrusiveRedBlackTreeBaseTraits, Comparator>;
using TreeTypeImpl = impl::IntrusiveRedBlackTreeImpl;
private:
template <class, class, class>
friend class IntrusiveRedBlackTree;
friend class impl::IntrusiveRedBlackTreeImpl;
static constexpr IntrusiveRedBlackTreeNode* GetNode(Derived* parent) {
return static_cast<IntrusiveRedBlackTreeNode*>(parent);
}
static constexpr IntrusiveRedBlackTreeNode const* GetNode(Derived const* parent) {
return static_cast<const IntrusiveRedBlackTreeNode*>(parent);
}
static constexpr Derived* GetParent(IntrusiveRedBlackTreeNode* node) {
return static_cast<Derived*>(node);
}
static constexpr Derived const* GetParent(const IntrusiveRedBlackTreeNode* node) {
return static_cast<const Derived*>(node);
}
};
} // namespace Common

View File

@ -0,0 +1,189 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <type_traits>
#include "common/assert.h"
#include "common/common_types.h"
namespace Common {
template <typename T, size_t Size, size_t Align>
struct TypedStorage {
std::aligned_storage_t<Size, Align> storage_;
};
#define TYPED_STORAGE(...) TypedStorage<__VA_ARGS__, sizeof(__VA_ARGS__), alignof(__VA_ARGS__)>
template <typename T>
static constexpr T* GetPointer(TYPED_STORAGE(T) & ts) {
return static_cast<T*>(static_cast<void*>(std::addressof(ts.storage_)));
}
template <typename T>
static constexpr const T* GetPointer(const TYPED_STORAGE(T) & ts) {
return static_cast<const T*>(static_cast<const void*>(std::addressof(ts.storage_)));
}
namespace impl {
template <size_t MaxDepth>
struct OffsetOfUnionHolder {
template <typename ParentType, typename MemberType, size_t Offset>
union UnionImpl {
using PaddingMember = char;
static constexpr size_t GetOffset() {
return Offset;
}
#pragma pack(push, 1)
struct {
PaddingMember padding[Offset];
MemberType members[(sizeof(ParentType) / sizeof(MemberType)) + 1];
} data;
#pragma pack(pop)
UnionImpl<ParentType, MemberType, Offset + 1> next_union;
};
template <typename ParentType, typename MemberType>
union UnionImpl<ParentType, MemberType, 0> {
static constexpr size_t GetOffset() {
return 0;
}
struct {
MemberType members[(sizeof(ParentType) / sizeof(MemberType)) + 1];
} data;
UnionImpl<ParentType, MemberType, 1> next_union;
};
template <typename ParentType, typename MemberType>
union UnionImpl<ParentType, MemberType, MaxDepth> {};
};
template <typename ParentType, typename MemberType>
struct OffsetOfCalculator {
using UnionHolder =
typename OffsetOfUnionHolder<sizeof(MemberType)>::template UnionImpl<ParentType, MemberType,
0>;
union Union {
char c{};
UnionHolder first_union;
TYPED_STORAGE(ParentType) parent;
constexpr Union() : c() {}
};
static constexpr Union U = {};
static constexpr const MemberType* GetNextAddress(const MemberType* start,
const MemberType* target) {
while (start < target) {
start++;
}
return start;
}
static constexpr std::ptrdiff_t GetDifference(const MemberType* start,
const MemberType* target) {
return (target - start) * sizeof(MemberType);
}
template <typename CurUnion>
static constexpr std::ptrdiff_t OffsetOfImpl(MemberType ParentType::*member,
CurUnion& cur_union) {
constexpr size_t Offset = CurUnion::GetOffset();
const auto target = std::addressof(GetPointer(U.parent)->*member);
const auto start = std::addressof(cur_union.data.members[0]);
const auto next = GetNextAddress(start, target);
if (next != target) {
if constexpr (Offset < sizeof(MemberType) - 1) {
return OffsetOfImpl(member, cur_union.next_union);
} else {
UNREACHABLE();
}
}
return (next - start) * sizeof(MemberType) + Offset;
}
static constexpr std::ptrdiff_t OffsetOf(MemberType ParentType::*member) {
return OffsetOfImpl(member, U.first_union);
}
};
template <typename T>
struct GetMemberPointerTraits;
template <typename P, typename M>
struct GetMemberPointerTraits<M P::*> {
using Parent = P;
using Member = M;
};
template <auto MemberPtr>
using GetParentType = typename GetMemberPointerTraits<decltype(MemberPtr)>::Parent;
template <auto MemberPtr>
using GetMemberType = typename GetMemberPointerTraits<decltype(MemberPtr)>::Member;
template <auto MemberPtr, typename RealParentType = GetParentType<MemberPtr>>
static inline std::ptrdiff_t OffsetOf = [] {
using DeducedParentType = GetParentType<MemberPtr>;
using MemberType = GetMemberType<MemberPtr>;
static_assert(std::is_base_of<DeducedParentType, RealParentType>::value ||
std::is_same<RealParentType, DeducedParentType>::value);
return OffsetOfCalculator<RealParentType, MemberType>::OffsetOf(MemberPtr);
}();
} // namespace impl
template <auto MemberPtr, typename RealParentType = impl::GetParentType<MemberPtr>>
constexpr RealParentType& GetParentReference(impl::GetMemberType<MemberPtr>* member) {
std::ptrdiff_t Offset = impl::OffsetOf<MemberPtr, RealParentType>;
return *static_cast<RealParentType*>(
static_cast<void*>(static_cast<uint8_t*>(static_cast<void*>(member)) - Offset));
}
template <auto MemberPtr, typename RealParentType = impl::GetParentType<MemberPtr>>
constexpr RealParentType const& GetParentReference(impl::GetMemberType<MemberPtr> const* member) {
std::ptrdiff_t Offset = impl::OffsetOf<MemberPtr, RealParentType>;
return *static_cast<const RealParentType*>(static_cast<const void*>(
static_cast<const uint8_t*>(static_cast<const void*>(member)) - Offset));
}
template <auto MemberPtr, typename RealParentType = impl::GetParentType<MemberPtr>>
constexpr RealParentType* GetParentPointer(impl::GetMemberType<MemberPtr>* member) {
return std::addressof(GetParentReference<MemberPtr, RealParentType>(member));
}
template <auto MemberPtr, typename RealParentType = impl::GetParentType<MemberPtr>>
constexpr RealParentType const* GetParentPointer(impl::GetMemberType<MemberPtr> const* member) {
return std::addressof(GetParentReference<MemberPtr, RealParentType>(member));
}
template <auto MemberPtr, typename RealParentType = impl::GetParentType<MemberPtr>>
constexpr RealParentType& GetParentReference(impl::GetMemberType<MemberPtr>& member) {
return GetParentReference<MemberPtr, RealParentType>(std::addressof(member));
}
template <auto MemberPtr, typename RealParentType = impl::GetParentType<MemberPtr>>
constexpr RealParentType const& GetParentReference(impl::GetMemberType<MemberPtr> const& member) {
return GetParentReference<MemberPtr, RealParentType>(std::addressof(member));
}
template <auto MemberPtr, typename RealParentType = impl::GetParentType<MemberPtr>>
constexpr RealParentType* GetParentPointer(impl::GetMemberType<MemberPtr>& member) {
return std::addressof(GetParentReference<MemberPtr, RealParentType>(member));
}
template <auto MemberPtr, typename RealParentType = impl::GetParentType<MemberPtr>>
constexpr RealParentType const* GetParentPointer(impl::GetMemberType<MemberPtr> const& member) {
return std::addressof(GetParentReference<MemberPtr, RealParentType>(member));
}
} // namespace Common

822
src/common/tree.h Normal file
View File

@ -0,0 +1,822 @@
/* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */
/* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
/* $FreeBSD$ */
/*-
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SYS_TREE_H_
#define _SYS_TREE_H_
/* FreeBSD <sys/cdefs.h> has a lot of defines we don't really want. */
/* tree.h only actually uses __inline and __unused, so we'll just define those. */
/* #include <sys/cdefs.h> */
#ifndef __inline
#define __inline inline
#endif
/*
* This file defines data structures for different types of trees:
* splay trees and red-black trees.
*
* A splay tree is a self-organizing data structure. Every operation
* on the tree causes a splay to happen. The splay moves the requested
* node to the root of the tree and partly rebalances it.
*
* This has the benefit that request locality causes faster lookups as
* the requested nodes move to the top of the tree. On the other hand,
* every lookup causes memory writes.
*
* The Balance Theorem bounds the total access time for m operations
* and n inserts on an initially empty tree as O((m + n)lg n). The
* amortized cost for a sequence of m accesses to a splay tree is O(lg n);
*
* A red-black tree is a binary search tree with the node color as an
* extra attribute. It fulfills a set of conditions:
* - every search path from the root to a leaf consists of the
* same number of black nodes,
* - each red node (except for the root) has a black parent,
* - each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/
#define SPLAY_HEAD(name, type) \
struct name { \
struct type* sph_root; /* root of the tree */ \
}
#define SPLAY_INITIALIZER(root) \
{ NULL }
#define SPLAY_INIT(root) \
do { \
(root)->sph_root = NULL; \
} while (/*CONSTCOND*/ 0)
#define SPLAY_ENTRY(type) \
struct { \
struct type* spe_left; /* left element */ \
struct type* spe_right; /* right element */ \
}
#define SPLAY_LEFT(elm, field) (elm)->field.spe_left
#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
#define SPLAY_ROOT(head) (head)->sph_root
#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
#define SPLAY_ROTATE_RIGHT(head, tmp, field) \
do { \
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (/*CONSTCOND*/ 0)
#define SPLAY_ROTATE_LEFT(head, tmp, field) \
do { \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (/*CONSTCOND*/ 0)
#define SPLAY_LINKLEFT(head, tmp, field) \
do { \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
} while (/*CONSTCOND*/ 0)
#define SPLAY_LINKRIGHT(head, tmp, field) \
do { \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
} while (/*CONSTCOND*/ 0)
#define SPLAY_ASSEMBLE(head, node, left, right, field) \
do { \
SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field); \
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
} while (/*CONSTCOND*/ 0)
/* Generates prototypes and inline functions */
#define SPLAY_PROTOTYPE(name, type, field, cmp) \
void name##_SPLAY(struct name*, struct type*); \
void name##_SPLAY_MINMAX(struct name*, int); \
struct type* name##_SPLAY_INSERT(struct name*, struct type*); \
struct type* name##_SPLAY_REMOVE(struct name*, struct type*); \
\
/* Finds the node with the same key as elm */ \
static __inline struct type* name##_SPLAY_FIND(struct name* head, struct type* elm) { \
if (SPLAY_EMPTY(head)) \
return (NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) \
return (head->sph_root); \
return (NULL); \
} \
\
static __inline struct type* name##_SPLAY_NEXT(struct name* head, struct type* elm) { \
name##_SPLAY(head, elm); \
if (SPLAY_RIGHT(elm, field) != NULL) { \
elm = SPLAY_RIGHT(elm, field); \
while (SPLAY_LEFT(elm, field) != NULL) { \
elm = SPLAY_LEFT(elm, field); \
} \
} else \
elm = NULL; \
return (elm); \
} \
\
static __inline struct type* name##_SPLAY_MIN_MAX(struct name* head, int val) { \
name##_SPLAY_MINMAX(head, val); \
return (SPLAY_ROOT(head)); \
}
/* Main splay operation.
* Moves node close to the key of elm to top
*/
#define SPLAY_GENERATE(name, type, field, cmp) \
struct type* name##_SPLAY_INSERT(struct name* head, struct type* elm) { \
if (SPLAY_EMPTY(head)) { \
SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
} else { \
int __comp; \
name##_SPLAY(head, elm); \
__comp = (cmp)(elm, (head)->sph_root); \
if (__comp < 0) { \
SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field); \
SPLAY_RIGHT(elm, field) = (head)->sph_root; \
SPLAY_LEFT((head)->sph_root, field) = NULL; \
} else if (__comp > 0) { \
SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field); \
SPLAY_LEFT(elm, field) = (head)->sph_root; \
SPLAY_RIGHT((head)->sph_root, field) = NULL; \
} else \
return ((head)->sph_root); \
} \
(head)->sph_root = (elm); \
return (NULL); \
} \
\
struct type* name##_SPLAY_REMOVE(struct name* head, struct type* elm) { \
struct type* __tmp; \
if (SPLAY_EMPTY(head)) \
return (NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) { \
if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
} else { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
name##_SPLAY(head, elm); \
SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
} \
return (elm); \
} \
return (NULL); \
} \
\
void name##_SPLAY(struct name* head, struct type* elm) { \
struct type __node, *__left, *__right, *__tmp; \
int __comp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL; \
__left = __right = &__node; \
\
while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) < 0) { \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL) \
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) > 0) { \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL) \
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
} \
\
/* Splay with either the minimum or the maximum element \
* Used to find minimum or maximum element in tree. \
*/ \
void name##_SPLAY_MINMAX(struct name* head, int __comp) { \
struct type __node, *__left, *__right, *__tmp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL; \
__left = __right = &__node; \
\
while (1) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp < 0) { \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL) \
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp > 0) { \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL) \
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
}
#define SPLAY_NEGINF -1
#define SPLAY_INF 1
#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
#define SPLAY_FOREACH(x, name, head) \
for ((x) = SPLAY_MIN(name, head); (x) != NULL; (x) = SPLAY_NEXT(name, head, x))
/* Macros that define a red-black tree */
#define RB_HEAD(name, type) \
struct name { \
struct type* rbh_root; /* root of the tree */ \
}
#define RB_INITIALIZER(root) \
{ NULL }
#define RB_INIT(root) \
do { \
(root)->rbh_root = NULL; \
} while (/*CONSTCOND*/ 0)
#define RB_BLACK 0
#define RB_RED 1
#define RB_ENTRY(type) \
struct { \
struct type* rbe_left; /* left element */ \
struct type* rbe_right; /* right element */ \
struct type* rbe_parent; /* parent element */ \
int rbe_color; /* node color */ \
}
#define RB_LEFT(elm, field) (elm)->field.rbe_left
#define RB_RIGHT(elm, field) (elm)->field.rbe_right
#define RB_PARENT(elm, field) (elm)->field.rbe_parent
#define RB_COLOR(elm, field) (elm)->field.rbe_color
#define RB_ROOT(head) (head)->rbh_root
#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
#define RB_SET(elm, parent, field) \
do { \
RB_PARENT(elm, field) = parent; \
RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
RB_COLOR(elm, field) = RB_RED; \
} while (/*CONSTCOND*/ 0)
#define RB_SET_BLACKRED(black, red, field) \
do { \
RB_COLOR(black, field) = RB_BLACK; \
RB_COLOR(red, field) = RB_RED; \
} while (/*CONSTCOND*/ 0)
#ifndef RB_AUGMENT
#define RB_AUGMENT(x) \
do { \
} while (0)
#endif
#define RB_ROTATE_LEFT(head, elm, tmp, field) \
do { \
(tmp) = RB_RIGHT(elm, field); \
if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \
RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
} \
RB_AUGMENT(elm); \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_LEFT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
RB_AUGMENT(tmp); \
if ((RB_PARENT(tmp, field))) \
RB_AUGMENT(RB_PARENT(tmp, field)); \
} while (/*CONSTCOND*/ 0)
#define RB_ROTATE_RIGHT(head, elm, tmp, field) \
do { \
(tmp) = RB_LEFT(elm, field); \
if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \
RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
} \
RB_AUGMENT(elm); \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_RIGHT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
RB_AUGMENT(tmp); \
if ((RB_PARENT(tmp, field))) \
RB_AUGMENT(RB_PARENT(tmp, field)); \
} while (/*CONSTCOND*/ 0)
/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, type, field, cmp) RB_PROTOTYPE_INTERNAL(name, type, field, cmp, )
#define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
RB_PROTOTYPE_INTERNAL(name, type, field, cmp, static)
#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
RB_PROTOTYPE_INSERT_COLOR(name, type, attr); \
RB_PROTOTYPE_REMOVE_COLOR(name, type, attr); \
RB_PROTOTYPE_INSERT(name, type, attr); \
RB_PROTOTYPE_REMOVE(name, type, attr); \
RB_PROTOTYPE_FIND(name, type, attr); \
RB_PROTOTYPE_NFIND(name, type, attr); \
RB_PROTOTYPE_FIND_LIGHT(name, type, attr); \
RB_PROTOTYPE_NFIND_LIGHT(name, type, attr); \
RB_PROTOTYPE_NEXT(name, type, attr); \
RB_PROTOTYPE_PREV(name, type, attr); \
RB_PROTOTYPE_MINMAX(name, type, attr);
#define RB_PROTOTYPE_INSERT_COLOR(name, type, attr) \
attr void name##_RB_INSERT_COLOR(struct name*, struct type*)
#define RB_PROTOTYPE_REMOVE_COLOR(name, type, attr) \
attr void name##_RB_REMOVE_COLOR(struct name*, struct type*, struct type*)
#define RB_PROTOTYPE_REMOVE(name, type, attr) \
attr struct type* name##_RB_REMOVE(struct name*, struct type*)
#define RB_PROTOTYPE_INSERT(name, type, attr) \
attr struct type* name##_RB_INSERT(struct name*, struct type*)
#define RB_PROTOTYPE_FIND(name, type, attr) \
attr struct type* name##_RB_FIND(struct name*, struct type*)
#define RB_PROTOTYPE_NFIND(name, type, attr) \
attr struct type* name##_RB_NFIND(struct name*, struct type*)
#define RB_PROTOTYPE_FIND_LIGHT(name, type, attr) \
attr struct type* name##_RB_FIND_LIGHT(struct name*, const void*)
#define RB_PROTOTYPE_NFIND_LIGHT(name, type, attr) \
attr struct type* name##_RB_NFIND_LIGHT(struct name*, const void*)
#define RB_PROTOTYPE_NEXT(name, type, attr) attr struct type* name##_RB_NEXT(struct type*)
#define RB_PROTOTYPE_PREV(name, type, attr) attr struct type* name##_RB_PREV(struct type*)
#define RB_PROTOTYPE_MINMAX(name, type, attr) attr struct type* name##_RB_MINMAX(struct name*, int)
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define RB_GENERATE_WITHOUT_COMPARE(name, type, field) \
RB_GENERATE_WITHOUT_COMPARE_INTERNAL(name, type, field, )
#define RB_GENERATE_WITHOUT_COMPARE_STATIC(name, type, field) \
RB_GENERATE_WITHOUT_COMPARE_INTERNAL(name, type, field, static)
#define RB_GENERATE_WITHOUT_COMPARE_INTERNAL(name, type, field, attr) \
RB_GENERATE_REMOVE_COLOR(name, type, field, attr) \
RB_GENERATE_REMOVE(name, type, field, attr) \
RB_GENERATE_NEXT(name, type, field, attr) \
RB_GENERATE_PREV(name, type, field, attr) \
RB_GENERATE_MINMAX(name, type, field, attr)
#define RB_GENERATE_WITH_COMPARE(name, type, field, cmp, lcmp) \
RB_GENERATE_WITH_COMPARE_INTERNAL(name, type, field, cmp, lcmp, )
#define RB_GENERATE_WITH_COMPARE_STATIC(name, type, field, cmp, lcmp) \
RB_GENERATE_WITH_COMPARE_INTERNAL(name, type, field, cmp, lcmp, static)
#define RB_GENERATE_WITH_COMPARE_INTERNAL(name, type, field, cmp, lcmp, attr) \
RB_GENERATE_INSERT_COLOR(name, type, field, attr) \
RB_GENERATE_INSERT(name, type, field, cmp, attr) \
RB_GENERATE_FIND(name, type, field, cmp, attr) \
RB_GENERATE_NFIND(name, type, field, cmp, attr) \
RB_GENERATE_FIND_LIGHT(name, type, field, lcmp, attr) \
RB_GENERATE_NFIND_LIGHT(name, type, field, lcmp, attr)
#define RB_GENERATE_ALL(name, type, field, cmp) RB_GENERATE_ALL_INTERNAL(name, type, field, cmp, )
#define RB_GENERATE_ALL_STATIC(name, type, field, cmp) \
RB_GENERATE_ALL_INTERNAL(name, type, field, cmp, static)
#define RB_GENERATE_ALL_INTERNAL(name, type, field, cmp, attr) \
RB_GENERATE_WITHOUT_COMPARE_INTERNAL(name, type, field, attr) \
RB_GENERATE_WITH_COMPARE_INTERNAL(name, type, field, cmp, attr)
#define RB_GENERATE_INSERT_COLOR(name, type, field, attr) \
attr void name##_RB_INSERT_COLOR(struct name* head, struct type* elm) { \
struct type *parent, *gparent, *tmp; \
while ((parent = RB_PARENT(elm, field)) != NULL && RB_COLOR(parent, field) == RB_RED) { \
gparent = RB_PARENT(parent, field); \
if (parent == RB_LEFT(gparent, field)) { \
tmp = RB_RIGHT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field); \
elm = gparent; \
continue; \
} \
if (RB_RIGHT(parent, field) == elm) { \
RB_ROTATE_LEFT(head, parent, tmp, field); \
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_RIGHT(head, gparent, tmp, field); \
} else { \
tmp = RB_LEFT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field); \
elm = gparent; \
continue; \
} \
if (RB_LEFT(parent, field) == elm) { \
RB_ROTATE_RIGHT(head, parent, tmp, field); \
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_LEFT(head, gparent, tmp, field); \
} \
} \
RB_COLOR(head->rbh_root, field) = RB_BLACK; \
}
#define RB_GENERATE_REMOVE_COLOR(name, type, field, attr) \
attr void name##_RB_REMOVE_COLOR(struct name* head, struct type* parent, struct type* elm) { \
struct type* tmp; \
while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && elm != RB_ROOT(head)) { \
if (RB_LEFT(parent, field) == elm) { \
tmp = RB_RIGHT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_LEFT(head, parent, tmp, field); \
tmp = RB_RIGHT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) && \
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) { \
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) { \
struct type* oleft; \
if ((oleft = RB_LEFT(tmp, field)) != NULL) \
RB_COLOR(oleft, field) = RB_BLACK; \
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_RIGHT(head, tmp, oleft, field); \
tmp = RB_RIGHT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field); \
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_RIGHT(tmp, field)) \
RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK; \
RB_ROTATE_LEFT(head, parent, tmp, field); \
elm = RB_ROOT(head); \
break; \
} \
} else { \
tmp = RB_LEFT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_RIGHT(head, parent, tmp, field); \
tmp = RB_LEFT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) && \
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) { \
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) { \
struct type* oright; \
if ((oright = RB_RIGHT(tmp, field)) != NULL) \
RB_COLOR(oright, field) = RB_BLACK; \
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_LEFT(head, tmp, oright, field); \
tmp = RB_LEFT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field); \
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_LEFT(tmp, field)) \
RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK; \
RB_ROTATE_RIGHT(head, parent, tmp, field); \
elm = RB_ROOT(head); \
break; \
} \
} \
} \
if (elm) \
RB_COLOR(elm, field) = RB_BLACK; \
}
#define RB_GENERATE_REMOVE(name, type, field, attr) \
attr struct type* name##_RB_REMOVE(struct name* head, struct type* elm) { \
struct type *child, *parent, *old = elm; \
int color; \
if (RB_LEFT(elm, field) == NULL) \
child = RB_RIGHT(elm, field); \
else if (RB_RIGHT(elm, field) == NULL) \
child = RB_LEFT(elm, field); \
else { \
struct type* left; \
elm = RB_RIGHT(elm, field); \
while ((left = RB_LEFT(elm, field)) != NULL) \
elm = left; \
child = RB_RIGHT(elm, field); \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = child; \
if (RB_PARENT(elm, field) == old) \
parent = elm; \
(elm)->field = (old)->field; \
if (RB_PARENT(old, field)) { \
if (RB_LEFT(RB_PARENT(old, field), field) == old) \
RB_LEFT(RB_PARENT(old, field), field) = elm; \
else \
RB_RIGHT(RB_PARENT(old, field), field) = elm; \
RB_AUGMENT(RB_PARENT(old, field)); \
} else \
RB_ROOT(head) = elm; \
RB_PARENT(RB_LEFT(old, field), field) = elm; \
if (RB_RIGHT(old, field)) \
RB_PARENT(RB_RIGHT(old, field), field) = elm; \
if (parent) { \
left = parent; \
do { \
RB_AUGMENT(left); \
} while ((left = RB_PARENT(left, field)) != NULL); \
} \
goto color; \
} \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = child; \
color: \
if (color == RB_BLACK) \
name##_RB_REMOVE_COLOR(head, parent, child); \
return (old); \
}
#define RB_GENERATE_INSERT(name, type, field, cmp, attr) \
/* Inserts a node into the RB tree */ \
attr struct type* name##_RB_INSERT(struct name* head, struct type* elm) { \
struct type* tmp; \
struct type* parent = NULL; \
int comp = 0; \
tmp = RB_ROOT(head); \
while (tmp) { \
parent = tmp; \
comp = (cmp)(elm, parent); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
RB_SET(elm, parent, field); \
if (parent != NULL) { \
if (comp < 0) \
RB_LEFT(parent, field) = elm; \
else \
RB_RIGHT(parent, field) = elm; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = elm; \
name##_RB_INSERT_COLOR(head, elm); \
return (NULL); \
}
#define RB_GENERATE_FIND(name, type, field, cmp, attr) \
/* Finds the node with the same key as elm */ \
attr struct type* name##_RB_FIND(struct name* head, struct type* elm) { \
struct type* tmp = RB_ROOT(head); \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (NULL); \
}
#define RB_GENERATE_NFIND(name, type, field, cmp, attr) \
/* Finds the first node greater than or equal to the search key */ \
attr struct type* name##_RB_NFIND(struct name* head, struct type* elm) { \
struct type* tmp = RB_ROOT(head); \
struct type* res = NULL; \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) { \
res = tmp; \
tmp = RB_LEFT(tmp, field); \
} else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (res); \
}
#define RB_GENERATE_FIND_LIGHT(name, type, field, lcmp, attr) \
/* Finds the node with the same key as elm */ \
attr struct type* name##_RB_FIND_LIGHT(struct name* head, const void* lelm) { \
struct type* tmp = RB_ROOT(head); \
int comp; \
while (tmp) { \
comp = lcmp(lelm, tmp); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (NULL); \
}
#define RB_GENERATE_NFIND_LIGHT(name, type, field, lcmp, attr) \
/* Finds the first node greater than or equal to the search key */ \
attr struct type* name##_RB_NFIND_LIGHT(struct name* head, const void* lelm) { \
struct type* tmp = RB_ROOT(head); \
struct type* res = NULL; \
int comp; \
while (tmp) { \
comp = lcmp(lelm, tmp); \
if (comp < 0) { \
res = tmp; \
tmp = RB_LEFT(tmp, field); \
} else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (res); \
}
#define RB_GENERATE_NEXT(name, type, field, attr) \
/* ARGSUSED */ \
attr struct type* name##_RB_NEXT(struct type* elm) { \
if (RB_RIGHT(elm, field)) { \
elm = RB_RIGHT(elm, field); \
while (RB_LEFT(elm, field)) \
elm = RB_LEFT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
}
#define RB_GENERATE_PREV(name, type, field, attr) \
/* ARGSUSED */ \
attr struct type* name##_RB_PREV(struct type* elm) { \
if (RB_LEFT(elm, field)) { \
elm = RB_LEFT(elm, field); \
while (RB_RIGHT(elm, field)) \
elm = RB_RIGHT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
}
#define RB_GENERATE_MINMAX(name, type, field, attr) \
attr struct type* name##_RB_MINMAX(struct name* head, int val) { \
struct type* tmp = RB_ROOT(head); \
struct type* parent = NULL; \
while (tmp) { \
parent = tmp; \
if (val < 0) \
tmp = RB_LEFT(tmp, field); \
else \
tmp = RB_RIGHT(tmp, field); \
} \
return (parent); \
}
#define RB_NEGINF -1
#define RB_INF 1
#define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
#define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
#define RB_FIND(name, x, y) name##_RB_FIND(x, y)
#define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
#define RB_FIND_LIGHT(name, x, y) name##_RB_FIND_LIGHT(x, y)
#define RB_NFIND_LIGHT(name, x, y) name##_RB_NFIND_LIGHT(x, y)
#define RB_NEXT(name, x, y) name##_RB_NEXT(y)
#define RB_PREV(name, x, y) name##_RB_PREV(y)
#define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
#define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
#define RB_FOREACH(x, name, head) \
for ((x) = RB_MIN(name, head); (x) != NULL; (x) = name##_RB_NEXT(x))
#define RB_FOREACH_FROM(x, name, y) \
for ((x) = (y); ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); (x) = (y))
#define RB_FOREACH_SAFE(x, name, head, y) \
for ((x) = RB_MIN(name, head); ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
(x) = (y))
#define RB_FOREACH_REVERSE(x, name, head) \
for ((x) = RB_MAX(name, head); (x) != NULL; (x) = name##_RB_PREV(x))
#define RB_FOREACH_REVERSE_FROM(x, name, y) \
for ((x) = (y); ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); (x) = (y))
#define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \
for ((x) = RB_MAX(name, head); ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
(x) = (y))
#endif /* _SYS_TREE_H_ */

View File

@ -142,8 +142,6 @@ add_library(core STATIC
hardware_interrupt_manager.h
hle/ipc.h
hle/ipc_helpers.h
hle/kernel/address_arbiter.cpp
hle/kernel/address_arbiter.h
hle/kernel/client_port.cpp
hle/kernel/client_port.h
hle/kernel/client_session.cpp
@ -157,13 +155,19 @@ add_library(core STATIC
hle/kernel/handle_table.h
hle/kernel/hle_ipc.cpp
hle/kernel/hle_ipc.h
hle/kernel/k_address_arbiter.cpp
hle/kernel/k_address_arbiter.h
hle/kernel/k_affinity_mask.h
hle/kernel/k_condition_variable.cpp
hle/kernel/k_condition_variable.h
hle/kernel/k_priority_queue.h
hle/kernel/k_scheduler.cpp
hle/kernel/k_scheduler.h
hle/kernel/k_scheduler_lock.h
hle/kernel/k_scoped_lock.h
hle/kernel/k_scoped_scheduler_lock_and_sleep.h
hle/kernel/k_synchronization_object.cpp
hle/kernel/k_synchronization_object.h
hle/kernel/kernel.cpp
hle/kernel/kernel.h
hle/kernel/memory/address_space_info.cpp
@ -183,8 +187,6 @@ add_library(core STATIC
hle/kernel/memory/slab_heap.h
hle/kernel/memory/system_control.cpp
hle/kernel/memory/system_control.h
hle/kernel/mutex.cpp
hle/kernel/mutex.h
hle/kernel/object.cpp
hle/kernel/object.h
hle/kernel/physical_core.cpp
@ -210,12 +212,10 @@ add_library(core STATIC
hle/kernel/shared_memory.h
hle/kernel/svc.cpp
hle/kernel/svc.h
hle/kernel/svc_common.h
hle/kernel/svc_results.h
hle/kernel/svc_types.h
hle/kernel/svc_wrap.h
hle/kernel/synchronization_object.cpp
hle/kernel/synchronization_object.h
hle/kernel/synchronization.cpp
hle/kernel/synchronization.h
hle/kernel/thread.cpp
hle/kernel/thread.h
hle/kernel/time_manager.cpp

View File

@ -26,9 +26,10 @@ using CPUInterrupts = std::array<CPUInterruptHandler, Core::Hardware::NUM_CPU_CO
/// Generic ARMv8 CPU interface
class ARM_Interface : NonCopyable {
public:
explicit ARM_Interface(System& system_, CPUInterrupts& interrupt_handlers, bool uses_wall_clock)
: system{system_}, interrupt_handlers{interrupt_handlers}, uses_wall_clock{
uses_wall_clock} {}
explicit ARM_Interface(System& system_, CPUInterrupts& interrupt_handlers_,
bool uses_wall_clock_)
: system{system_}, interrupt_handlers{interrupt_handlers_}, uses_wall_clock{
uses_wall_clock_} {}
virtual ~ARM_Interface() = default;
struct ThreadContext32 {

View File

@ -49,6 +49,7 @@ void CoreTiming::ThreadEntry(CoreTiming& instance) {
Common::SetCurrentThreadPriority(Common::ThreadPriority::VeryHigh);
instance.on_thread_init();
instance.ThreadLoop();
MicroProfileOnThreadExit();
}
void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {

View File

@ -1,317 +0,0 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <vector>
#include "common/assert.h"
#include "common/common_types.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/result.h"
#include "core/memory.h"
namespace Kernel {
// Wake up num_to_wake (or all) threads in a vector.
void AddressArbiter::WakeThreads(const std::vector<std::shared_ptr<Thread>>& waiting_threads,
s32 num_to_wake) {
// Only process up to 'target' threads, unless 'target' is <= 0, in which case process
// them all.
std::size_t last = waiting_threads.size();
if (num_to_wake > 0) {
last = std::min(last, static_cast<std::size_t>(num_to_wake));
}
// Signal the waiting threads.
for (std::size_t i = 0; i < last; i++) {
waiting_threads[i]->SetSynchronizationResults(nullptr, RESULT_SUCCESS);
RemoveThread(waiting_threads[i]);
waiting_threads[i]->WaitForArbitration(false);
waiting_threads[i]->ResumeFromWait();
}
}
AddressArbiter::AddressArbiter(Core::System& system) : system{system} {}
AddressArbiter::~AddressArbiter() = default;
ResultCode AddressArbiter::SignalToAddress(VAddr address, SignalType type, s32 value,
s32 num_to_wake) {
switch (type) {
case SignalType::Signal:
return SignalToAddressOnly(address, num_to_wake);
case SignalType::IncrementAndSignalIfEqual:
return IncrementAndSignalToAddressIfEqual(address, value, num_to_wake);
case SignalType::ModifyByWaitingCountAndSignalIfEqual:
return ModifyByWaitingCountAndSignalToAddressIfEqual(address, value, num_to_wake);
default:
return ERR_INVALID_ENUM_VALUE;
}
}
ResultCode AddressArbiter::SignalToAddressOnly(VAddr address, s32 num_to_wake) {
KScopedSchedulerLock lock(system.Kernel());
const std::vector<std::shared_ptr<Thread>> waiting_threads =
GetThreadsWaitingOnAddress(address);
WakeThreads(waiting_threads, num_to_wake);
return RESULT_SUCCESS;
}
ResultCode AddressArbiter::IncrementAndSignalToAddressIfEqual(VAddr address, s32 value,
s32 num_to_wake) {
KScopedSchedulerLock lock(system.Kernel());
auto& memory = system.Memory();
// Ensure that we can write to the address.
if (!memory.IsValidVirtualAddress(address)) {
return ERR_INVALID_ADDRESS_STATE;
}
const std::size_t current_core = system.CurrentCoreIndex();
auto& monitor = system.Monitor();
u32 current_value;
do {
current_value = monitor.ExclusiveRead32(current_core, address);
if (current_value != static_cast<u32>(value)) {
return ERR_INVALID_STATE;
}
current_value++;
} while (!monitor.ExclusiveWrite32(current_core, address, current_value));
return SignalToAddressOnly(address, num_to_wake);
}
ResultCode AddressArbiter::ModifyByWaitingCountAndSignalToAddressIfEqual(VAddr address, s32 value,
s32 num_to_wake) {
KScopedSchedulerLock lock(system.Kernel());
auto& memory = system.Memory();
// Ensure that we can write to the address.
if (!memory.IsValidVirtualAddress(address)) {
return ERR_INVALID_ADDRESS_STATE;
}
// Get threads waiting on the address.
const std::vector<std::shared_ptr<Thread>> waiting_threads =
GetThreadsWaitingOnAddress(address);
const std::size_t current_core = system.CurrentCoreIndex();
auto& monitor = system.Monitor();
s32 updated_value;
do {
updated_value = monitor.ExclusiveRead32(current_core, address);
if (updated_value != value) {
return ERR_INVALID_STATE;
}
// Determine the modified value depending on the waiting count.
if (num_to_wake <= 0) {
if (waiting_threads.empty()) {
updated_value = value + 1;
} else {
updated_value = value - 1;
}
} else {
if (waiting_threads.empty()) {
updated_value = value + 1;
} else if (waiting_threads.size() <= static_cast<u32>(num_to_wake)) {
updated_value = value - 1;
} else {
updated_value = value;
}
}
} while (!monitor.ExclusiveWrite32(current_core, address, updated_value));
WakeThreads(waiting_threads, num_to_wake);
return RESULT_SUCCESS;
}
ResultCode AddressArbiter::WaitForAddress(VAddr address, ArbitrationType type, s32 value,
s64 timeout_ns) {
switch (type) {
case ArbitrationType::WaitIfLessThan:
return WaitForAddressIfLessThan(address, value, timeout_ns, false);
case ArbitrationType::DecrementAndWaitIfLessThan:
return WaitForAddressIfLessThan(address, value, timeout_ns, true);
case ArbitrationType::WaitIfEqual:
return WaitForAddressIfEqual(address, value, timeout_ns);
default:
return ERR_INVALID_ENUM_VALUE;
}
}
ResultCode AddressArbiter::WaitForAddressIfLessThan(VAddr address, s32 value, s64 timeout,
bool should_decrement) {
auto& memory = system.Memory();
auto& kernel = system.Kernel();
Thread* current_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle event_handle = InvalidHandle;
{
KScopedSchedulerLockAndSleep lock(kernel, event_handle, current_thread, timeout);
if (current_thread->IsPendingTermination()) {
lock.CancelSleep();
return ERR_THREAD_TERMINATING;
}
// Ensure that we can read the address.
if (!memory.IsValidVirtualAddress(address)) {
lock.CancelSleep();
return ERR_INVALID_ADDRESS_STATE;
}
s32 current_value = static_cast<s32>(memory.Read32(address));
if (current_value >= value) {
lock.CancelSleep();
return ERR_INVALID_STATE;
}
current_thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT);
s32 decrement_value;
const std::size_t current_core = system.CurrentCoreIndex();
auto& monitor = system.Monitor();
do {
current_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
if (should_decrement) {
decrement_value = current_value - 1;
} else {
decrement_value = current_value;
}
} while (
!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(decrement_value)));
// Short-circuit without rescheduling, if timeout is zero.
if (timeout == 0) {
lock.CancelSleep();
return RESULT_TIMEOUT;
}
current_thread->SetArbiterWaitAddress(address);
InsertThread(SharedFrom(current_thread));
current_thread->SetStatus(ThreadStatus::WaitArb);
current_thread->WaitForArbitration(true);
}
if (event_handle != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(event_handle);
}
{
KScopedSchedulerLock lock(kernel);
if (current_thread->IsWaitingForArbitration()) {
RemoveThread(SharedFrom(current_thread));
current_thread->WaitForArbitration(false);
}
}
return current_thread->GetSignalingResult();
}
ResultCode AddressArbiter::WaitForAddressIfEqual(VAddr address, s32 value, s64 timeout) {
auto& memory = system.Memory();
auto& kernel = system.Kernel();
Thread* current_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle event_handle = InvalidHandle;
{
KScopedSchedulerLockAndSleep lock(kernel, event_handle, current_thread, timeout);
if (current_thread->IsPendingTermination()) {
lock.CancelSleep();
return ERR_THREAD_TERMINATING;
}
// Ensure that we can read the address.
if (!memory.IsValidVirtualAddress(address)) {
lock.CancelSleep();
return ERR_INVALID_ADDRESS_STATE;
}
s32 current_value = static_cast<s32>(memory.Read32(address));
if (current_value != value) {
lock.CancelSleep();
return ERR_INVALID_STATE;
}
// Short-circuit without rescheduling, if timeout is zero.
if (timeout == 0) {
lock.CancelSleep();
return RESULT_TIMEOUT;
}
current_thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT);
current_thread->SetArbiterWaitAddress(address);
InsertThread(SharedFrom(current_thread));
current_thread->SetStatus(ThreadStatus::WaitArb);
current_thread->WaitForArbitration(true);
}
if (event_handle != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(event_handle);
}
{
KScopedSchedulerLock lock(kernel);
if (current_thread->IsWaitingForArbitration()) {
RemoveThread(SharedFrom(current_thread));
current_thread->WaitForArbitration(false);
}
}
return current_thread->GetSignalingResult();
}
void AddressArbiter::InsertThread(std::shared_ptr<Thread> thread) {
const VAddr arb_addr = thread->GetArbiterWaitAddress();
std::list<std::shared_ptr<Thread>>& thread_list = arb_threads[arb_addr];
const auto iter =
std::find_if(thread_list.cbegin(), thread_list.cend(), [&thread](const auto& entry) {
return entry->GetPriority() >= thread->GetPriority();
});
if (iter == thread_list.cend()) {
thread_list.push_back(std::move(thread));
} else {
thread_list.insert(iter, std::move(thread));
}
}
void AddressArbiter::RemoveThread(std::shared_ptr<Thread> thread) {
const VAddr arb_addr = thread->GetArbiterWaitAddress();
std::list<std::shared_ptr<Thread>>& thread_list = arb_threads[arb_addr];
const auto iter = std::find_if(thread_list.cbegin(), thread_list.cend(),
[&thread](const auto& entry) { return thread == entry; });
if (iter != thread_list.cend()) {
thread_list.erase(iter);
}
}
std::vector<std::shared_ptr<Thread>> AddressArbiter::GetThreadsWaitingOnAddress(
VAddr address) const {
const auto iter = arb_threads.find(address);
if (iter == arb_threads.cend()) {
return {};
}
const std::list<std::shared_ptr<Thread>>& thread_list = iter->second;
return {thread_list.cbegin(), thread_list.cend()};
}
} // namespace Kernel

View File

@ -1,91 +0,0 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <list>
#include <memory>
#include <unordered_map>
#include <vector>
#include "common/common_types.h"
union ResultCode;
namespace Core {
class System;
}
namespace Kernel {
class Thread;
class AddressArbiter {
public:
enum class ArbitrationType {
WaitIfLessThan = 0,
DecrementAndWaitIfLessThan = 1,
WaitIfEqual = 2,
};
enum class SignalType {
Signal = 0,
IncrementAndSignalIfEqual = 1,
ModifyByWaitingCountAndSignalIfEqual = 2,
};
explicit AddressArbiter(Core::System& system);
~AddressArbiter();
AddressArbiter(const AddressArbiter&) = delete;
AddressArbiter& operator=(const AddressArbiter&) = delete;
AddressArbiter(AddressArbiter&&) = default;
AddressArbiter& operator=(AddressArbiter&&) = delete;
/// Signals an address being waited on with a particular signaling type.
ResultCode SignalToAddress(VAddr address, SignalType type, s32 value, s32 num_to_wake);
/// Waits on an address with a particular arbitration type.
ResultCode WaitForAddress(VAddr address, ArbitrationType type, s32 value, s64 timeout_ns);
private:
/// Signals an address being waited on.
ResultCode SignalToAddressOnly(VAddr address, s32 num_to_wake);
/// Signals an address being waited on and increments its value if equal to the value argument.
ResultCode IncrementAndSignalToAddressIfEqual(VAddr address, s32 value, s32 num_to_wake);
/// Signals an address being waited on and modifies its value based on waiting thread count if
/// equal to the value argument.
ResultCode ModifyByWaitingCountAndSignalToAddressIfEqual(VAddr address, s32 value,
s32 num_to_wake);
/// Waits on an address if the value passed is less than the argument value,
/// optionally decrementing.
ResultCode WaitForAddressIfLessThan(VAddr address, s32 value, s64 timeout,
bool should_decrement);
/// Waits on an address if the value passed is equal to the argument value.
ResultCode WaitForAddressIfEqual(VAddr address, s32 value, s64 timeout);
/// Wake up num_to_wake (or all) threads in a vector.
void WakeThreads(const std::vector<std::shared_ptr<Thread>>& waiting_threads, s32 num_to_wake);
/// Insert a thread into the address arbiter container
void InsertThread(std::shared_ptr<Thread> thread);
/// Removes a thread from the address arbiter container
void RemoveThread(std::shared_ptr<Thread> thread);
// Gets the threads waiting on an address.
std::vector<std::shared_ptr<Thread>> GetThreadsWaitingOnAddress(VAddr address) const;
/// List of threads waiting for a address arbiter
std::unordered_map<VAddr, std::list<std::shared_ptr<Thread>>> arb_threads;
Core::System& system;
};
} // namespace Kernel

View File

@ -33,9 +33,6 @@ ResultVal<std::shared_ptr<ClientSession>> ClientPort::Connect() {
server_port->AppendPendingSession(std::move(server));
}
// Wake the threads waiting on the ServerPort
server_port->Signal();
return MakeResult(std::move(client));
}

View File

@ -12,7 +12,7 @@
namespace Kernel {
ClientSession::ClientSession(KernelCore& kernel) : SynchronizationObject{kernel} {}
ClientSession::ClientSession(KernelCore& kernel) : KSynchronizationObject{kernel} {}
ClientSession::~ClientSession() {
// This destructor will be called automatically when the last ClientSession handle is closed by
@ -22,15 +22,6 @@ ClientSession::~ClientSession() {
}
}
bool ClientSession::ShouldWait(const Thread* thread) const {
UNIMPLEMENTED();
return {};
}
void ClientSession::Acquire(Thread* thread) {
UNIMPLEMENTED();
}
bool ClientSession::IsSignaled() const {
UNIMPLEMENTED();
return true;

View File

@ -7,7 +7,7 @@
#include <memory>
#include <string>
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/result.h"
union ResultCode;
@ -26,7 +26,7 @@ class KernelCore;
class Session;
class Thread;
class ClientSession final : public SynchronizationObject {
class ClientSession final : public KSynchronizationObject {
public:
explicit ClientSession(KernelCore& kernel);
~ClientSession() override;
@ -49,10 +49,6 @@ public:
ResultCode SendSyncRequest(std::shared_ptr<Thread> thread, Core::Memory::Memory& memory,
Core::Timing::CoreTiming& core_timing);
bool ShouldWait(const Thread* thread) const override;
void Acquire(Thread* thread) override;
bool IsSignaled() const override;
private:

View File

@ -13,12 +13,14 @@ namespace Kernel {
constexpr ResultCode ERR_MAX_CONNECTIONS_REACHED{ErrorModule::Kernel, 7};
constexpr ResultCode ERR_INVALID_CAPABILITY_DESCRIPTOR{ErrorModule::Kernel, 14};
constexpr ResultCode ERR_THREAD_TERMINATING{ErrorModule::Kernel, 59};
constexpr ResultCode ERR_TERMINATION_REQUESTED{ErrorModule::Kernel, 59};
constexpr ResultCode ERR_INVALID_SIZE{ErrorModule::Kernel, 101};
constexpr ResultCode ERR_INVALID_ADDRESS{ErrorModule::Kernel, 102};
constexpr ResultCode ERR_OUT_OF_RESOURCES{ErrorModule::Kernel, 103};
constexpr ResultCode ERR_OUT_OF_MEMORY{ErrorModule::Kernel, 104};
constexpr ResultCode ERR_HANDLE_TABLE_FULL{ErrorModule::Kernel, 105};
constexpr ResultCode ERR_INVALID_ADDRESS_STATE{ErrorModule::Kernel, 106};
constexpr ResultCode ERR_INVALID_CURRENT_MEMORY{ErrorModule::Kernel, 106};
constexpr ResultCode ERR_INVALID_MEMORY_PERMISSIONS{ErrorModule::Kernel, 108};
constexpr ResultCode ERR_INVALID_MEMORY_RANGE{ErrorModule::Kernel, 110};
constexpr ResultCode ERR_INVALID_PROCESSOR_ID{ErrorModule::Kernel, 113};
@ -28,6 +30,7 @@ constexpr ResultCode ERR_INVALID_POINTER{ErrorModule::Kernel, 115};
constexpr ResultCode ERR_INVALID_COMBINATION{ErrorModule::Kernel, 116};
constexpr ResultCode RESULT_TIMEOUT{ErrorModule::Kernel, 117};
constexpr ResultCode ERR_SYNCHRONIZATION_CANCELED{ErrorModule::Kernel, 118};
constexpr ResultCode ERR_CANCELLED{ErrorModule::Kernel, 118};
constexpr ResultCode ERR_OUT_OF_RANGE{ErrorModule::Kernel, 119};
constexpr ResultCode ERR_INVALID_ENUM_VALUE{ErrorModule::Kernel, 120};
constexpr ResultCode ERR_NOT_FOUND{ErrorModule::Kernel, 121};

View File

@ -0,0 +1,367 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/memory.h"
namespace Kernel {
KAddressArbiter::KAddressArbiter(Core::System& system_)
: system{system_}, kernel{system.Kernel()} {}
KAddressArbiter::~KAddressArbiter() = default;
namespace {
bool ReadFromUser(Core::System& system, s32* out, VAddr address) {
*out = system.Memory().Read32(address);
return true;
}
bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 value) {
auto& monitor = system.Monitor();
const auto current_core = system.CurrentCoreIndex();
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
// TODO(bunnei): We should call CanAccessAtomic(..) here.
// Load the value from the address.
const s32 current_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
// Compare it to the desired one.
if (current_value < value) {
// If less than, we want to try to decrement.
const s32 decrement_value = current_value - 1;
// Decrement and try to store.
if (!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(decrement_value))) {
// If we failed to store, try again.
DecrementIfLessThan(system, out, address, value);
}
} else {
// Otherwise, clear our exclusive hold and finish
monitor.ClearExclusive();
}
// We're done.
*out = current_value;
return true;
}
bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32 new_value) {
auto& monitor = system.Monitor();
const auto current_core = system.CurrentCoreIndex();
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
// TODO(bunnei): We should call CanAccessAtomic(..) here.
// Load the value from the address.
const s32 current_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
// Compare it to the desired one.
if (current_value == value) {
// If equal, we want to try to write the new value.
// Try to store.
if (!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(new_value))) {
// If we failed to store, try again.
UpdateIfEqual(system, out, address, value, new_value);
}
} else {
// Otherwise, clear our exclusive hold and finish.
monitor.ClearExclusive();
}
// We're done.
*out = current_value;
return true;
}
} // namespace
ResultCode KAddressArbiter::Signal(VAddr addr, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
auto it = thread_tree.nfind_light({addr, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
Thread* target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->Wakeup();
it = thread_tree.erase(it);
target_thread->ClearAddressArbiter();
++num_waiters;
}
}
return RESULT_SUCCESS;
}
ResultCode KAddressArbiter::SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
// Check the userspace value.
s32 user_value{};
R_UNLESS(UpdateIfEqual(system, std::addressof(user_value), addr, value, value + 1),
Svc::ResultInvalidCurrentMemory);
R_UNLESS(user_value == value, Svc::ResultInvalidState);
auto it = thread_tree.nfind_light({addr, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
Thread* target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->Wakeup();
it = thread_tree.erase(it);
target_thread->ClearAddressArbiter();
++num_waiters;
}
}
return RESULT_SUCCESS;
}
ResultCode KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
auto it = thread_tree.nfind_light({addr, -1});
// Determine the updated value.
s32 new_value{};
if (/*GetTargetFirmware() >= TargetFirmware_7_0_0*/ true) {
if (count <= 0) {
if ((it != thread_tree.end()) && (it->GetAddressArbiterKey() == addr)) {
new_value = value - 2;
} else {
new_value = value + 1;
}
} else {
if ((it != thread_tree.end()) && (it->GetAddressArbiterKey() == addr)) {
auto tmp_it = it;
s32 tmp_num_waiters{};
while ((++tmp_it != thread_tree.end()) &&
(tmp_it->GetAddressArbiterKey() == addr)) {
if ((tmp_num_waiters++) >= count) {
break;
}
}
if (tmp_num_waiters < count) {
new_value = value - 1;
} else {
new_value = value;
}
} else {
new_value = value + 1;
}
}
} else {
if (count <= 0) {
if ((it != thread_tree.end()) && (it->GetAddressArbiterKey() == addr)) {
new_value = value - 1;
} else {
new_value = value + 1;
}
} else {
auto tmp_it = it;
s32 tmp_num_waiters{};
while ((tmp_it != thread_tree.end()) && (tmp_it->GetAddressArbiterKey() == addr) &&
(tmp_num_waiters < count + 1)) {
++tmp_num_waiters;
++tmp_it;
}
if (tmp_num_waiters == 0) {
new_value = value + 1;
} else if (tmp_num_waiters <= count) {
new_value = value - 1;
} else {
new_value = value;
}
}
}
// Check the userspace value.
s32 user_value{};
bool succeeded{};
if (value != new_value) {
succeeded = UpdateIfEqual(system, std::addressof(user_value), addr, value, new_value);
} else {
succeeded = ReadFromUser(system, std::addressof(user_value), addr);
}
R_UNLESS(succeeded, Svc::ResultInvalidCurrentMemory);
R_UNLESS(user_value == value, Svc::ResultInvalidState);
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
Thread* target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->Wakeup();
it = thread_tree.erase(it);
target_thread->ClearAddressArbiter();
++num_waiters;
}
}
return RESULT_SUCCESS;
}
ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
// Prepare to wait.
Thread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout);
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return Svc::ResultTerminationRequested;
}
// Set the synced object.
cur_thread->SetSyncedObject(nullptr, Svc::ResultTimedOut);
// Read the value from userspace.
s32 user_value{};
bool succeeded{};
if (decrement) {
succeeded = DecrementIfLessThan(system, std::addressof(user_value), addr, value);
} else {
succeeded = ReadFromUser(system, std::addressof(user_value), addr);
}
if (!succeeded) {
slp.CancelSleep();
return Svc::ResultInvalidCurrentMemory;
}
// Check that the value is less than the specified one.
if (user_value >= value) {
slp.CancelSleep();
return Svc::ResultInvalidState;
}
// Check that the timeout is non-zero.
if (timeout == 0) {
slp.CancelSleep();
return Svc::ResultTimedOut;
}
// Set the arbiter.
cur_thread->SetAddressArbiter(std::addressof(thread_tree), addr);
thread_tree.insert(*cur_thread);
cur_thread->SetState(ThreadState::Waiting);
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration);
}
// Cancel the timer wait.
if (timer != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
// Remove from the address arbiter.
{
KScopedSchedulerLock sl(kernel);
if (cur_thread->IsWaitingForAddressArbiter()) {
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
cur_thread->ClearAddressArbiter();
}
}
// Get the result.
KSynchronizationObject* dummy{};
return cur_thread->GetWaitResult(std::addressof(dummy));
}
ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
// Prepare to wait.
Thread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout);
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return Svc::ResultTerminationRequested;
}
// Set the synced object.
cur_thread->SetSyncedObject(nullptr, Svc::ResultTimedOut);
// Read the value from userspace.
s32 user_value{};
if (!ReadFromUser(system, std::addressof(user_value), addr)) {
slp.CancelSleep();
return Svc::ResultInvalidCurrentMemory;
}
// Check that the value is equal.
if (value != user_value) {
slp.CancelSleep();
return Svc::ResultInvalidState;
}
// Check that the timeout is non-zero.
if (timeout == 0) {
slp.CancelSleep();
return Svc::ResultTimedOut;
}
// Set the arbiter.
cur_thread->SetAddressArbiter(std::addressof(thread_tree), addr);
thread_tree.insert(*cur_thread);
cur_thread->SetState(ThreadState::Waiting);
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration);
}
// Cancel the timer wait.
if (timer != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
// Remove from the address arbiter.
{
KScopedSchedulerLock sl(kernel);
if (cur_thread->IsWaitingForAddressArbiter()) {
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
cur_thread->ClearAddressArbiter();
}
}
// Get the result.
KSynchronizationObject* dummy{};
return cur_thread->GetWaitResult(std::addressof(dummy));
}
} // namespace Kernel

View File

@ -0,0 +1,70 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/assert.h"
#include "common/common_types.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/svc_types.h"
union ResultCode;
namespace Core {
class System;
}
namespace Kernel {
class KernelCore;
class KAddressArbiter {
public:
using ThreadTree = KConditionVariable::ThreadTree;
explicit KAddressArbiter(Core::System& system_);
~KAddressArbiter();
[[nodiscard]] ResultCode SignalToAddress(VAddr addr, Svc::SignalType type, s32 value,
s32 count) {
switch (type) {
case Svc::SignalType::Signal:
return Signal(addr, count);
case Svc::SignalType::SignalAndIncrementIfEqual:
return SignalAndIncrementIfEqual(addr, value, count);
case Svc::SignalType::SignalAndModifyByWaitingCountIfEqual:
return SignalAndModifyByWaitingCountIfEqual(addr, value, count);
}
UNREACHABLE();
return RESULT_UNKNOWN;
}
[[nodiscard]] ResultCode WaitForAddress(VAddr addr, Svc::ArbitrationType type, s32 value,
s64 timeout) {
switch (type) {
case Svc::ArbitrationType::WaitIfLessThan:
return WaitIfLessThan(addr, value, false, timeout);
case Svc::ArbitrationType::DecrementAndWaitIfLessThan:
return WaitIfLessThan(addr, value, true, timeout);
case Svc::ArbitrationType::WaitIfEqual:
return WaitIfEqual(addr, value, timeout);
}
UNREACHABLE();
return RESULT_UNKNOWN;
}
private:
[[nodiscard]] ResultCode Signal(VAddr addr, s32 count);
[[nodiscard]] ResultCode SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count);
[[nodiscard]] ResultCode SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count);
[[nodiscard]] ResultCode WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout);
[[nodiscard]] ResultCode WaitIfEqual(VAddr addr, s32 value, s64 timeout);
ThreadTree thread_tree;
Core::System& system;
KernelCore& kernel;
};
} // namespace Kernel

View File

@ -0,0 +1,349 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <vector>
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/svc_common.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/thread.h"
#include "core/memory.h"
namespace Kernel {
namespace {
bool ReadFromUser(Core::System& system, u32* out, VAddr address) {
*out = system.Memory().Read32(address);
return true;
}
bool WriteToUser(Core::System& system, VAddr address, const u32* p) {
system.Memory().Write32(address, *p);
return true;
}
bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero,
u32 new_orr_mask) {
auto& monitor = system.Monitor();
const auto current_core = system.CurrentCoreIndex();
// Load the value from the address.
const auto expected = monitor.ExclusiveRead32(current_core, address);
// Orr in the new mask.
u32 value = expected | new_orr_mask;
// If the value is zero, use the if_zero value, otherwise use the newly orr'd value.
if (!expected) {
value = if_zero;
}
// Try to store.
if (!monitor.ExclusiveWrite32(current_core, address, value)) {
// If we failed to store, try again.
return UpdateLockAtomic(system, out, address, if_zero, new_orr_mask);
}
// We're done.
*out = expected;
return true;
}
} // namespace
KConditionVariable::KConditionVariable(Core::System& system_)
: system{system_}, kernel{system.Kernel()} {}
KConditionVariable::~KConditionVariable() = default;
ResultCode KConditionVariable::SignalToAddress(VAddr addr) {
Thread* owner_thread = kernel.CurrentScheduler()->GetCurrentThread();
// Signal the address.
{
KScopedSchedulerLock sl(kernel);
// Remove waiter thread.
s32 num_waiters{};
Thread* next_owner_thread =
owner_thread->RemoveWaiterByKey(std::addressof(num_waiters), addr);
// Determine the next tag.
u32 next_value{};
if (next_owner_thread) {
next_value = next_owner_thread->GetAddressKeyValue();
if (num_waiters > 1) {
next_value |= Svc::HandleWaitMask;
}
next_owner_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
next_owner_thread->Wakeup();
}
// Write the value to userspace.
if (!WriteToUser(system, addr, std::addressof(next_value))) {
if (next_owner_thread) {
next_owner_thread->SetSyncedObject(nullptr, Svc::ResultInvalidCurrentMemory);
}
return Svc::ResultInvalidCurrentMemory;
}
}
return RESULT_SUCCESS;
}
ResultCode KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value) {
Thread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
// Wait for the address.
{
std::shared_ptr<Thread> owner_thread;
ASSERT(!owner_thread);
{
KScopedSchedulerLock sl(kernel);
cur_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
// Check if the thread should terminate.
R_UNLESS(!cur_thread->IsTerminationRequested(), Svc::ResultTerminationRequested);
{
// Read the tag from userspace.
u32 test_tag{};
R_UNLESS(ReadFromUser(system, std::addressof(test_tag), addr),
Svc::ResultInvalidCurrentMemory);
// If the tag isn't the handle (with wait mask), we're done.
R_UNLESS(test_tag == (handle | Svc::HandleWaitMask), RESULT_SUCCESS);
// Get the lock owner thread.
owner_thread = kernel.CurrentProcess()->GetHandleTable().Get<Thread>(handle);
R_UNLESS(owner_thread, Svc::ResultInvalidHandle);
// Update the lock.
cur_thread->SetAddressKey(addr, value);
owner_thread->AddWaiter(cur_thread);
cur_thread->SetState(ThreadState::Waiting);
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
cur_thread->SetMutexWaitAddressForDebugging(addr);
}
}
ASSERT(owner_thread);
}
// Remove the thread as a waiter from the lock owner.
{
KScopedSchedulerLock sl(kernel);
Thread* owner_thread = cur_thread->GetLockOwner();
if (owner_thread != nullptr) {
owner_thread->RemoveWaiter(cur_thread);
}
}
// Get the wait result.
KSynchronizationObject* dummy{};
return cur_thread->GetWaitResult(std::addressof(dummy));
}
Thread* KConditionVariable::SignalImpl(Thread* thread) {
// Check pre-conditions.
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Update the tag.
VAddr address = thread->GetAddressKey();
u32 own_tag = thread->GetAddressKeyValue();
u32 prev_tag{};
bool can_access{};
{
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
// TODO(bunnei): We should call CanAccessAtomic(..) here.
can_access = true;
if (can_access) {
UpdateLockAtomic(system, std::addressof(prev_tag), address, own_tag,
Svc::HandleWaitMask);
}
}
Thread* thread_to_close = nullptr;
if (can_access) {
if (prev_tag == InvalidHandle) {
// If nobody held the lock previously, we're all good.
thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
thread->Wakeup();
} else {
// Get the previous owner.
auto owner_thread = kernel.CurrentProcess()->GetHandleTable().Get<Thread>(
prev_tag & ~Svc::HandleWaitMask);
if (owner_thread) {
// Add the thread as a waiter on the owner.
owner_thread->AddWaiter(thread);
thread_to_close = owner_thread.get();
} else {
// The lock was tagged with a thread that doesn't exist.
thread->SetSyncedObject(nullptr, Svc::ResultInvalidState);
thread->Wakeup();
}
}
} else {
// If the address wasn't accessible, note so.
thread->SetSyncedObject(nullptr, Svc::ResultInvalidCurrentMemory);
thread->Wakeup();
}
return thread_to_close;
}
void KConditionVariable::Signal(u64 cv_key, s32 count) {
// Prepare for signaling.
constexpr int MaxThreads = 16;
// TODO(bunnei): This should just be Thread once we implement KAutoObject instead of using
// std::shared_ptr.
std::vector<std::shared_ptr<Thread>> thread_list;
std::array<Thread*, MaxThreads> thread_array;
s32 num_to_close{};
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
auto it = thread_tree.nfind_light({cv_key, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetConditionVariableKey() == cv_key)) {
Thread* target_thread = std::addressof(*it);
if (Thread* thread = SignalImpl(target_thread); thread != nullptr) {
if (num_to_close < MaxThreads) {
thread_array[num_to_close++] = thread;
} else {
thread_list.push_back(SharedFrom(thread));
}
}
it = thread_tree.erase(it);
target_thread->ClearConditionVariable();
++num_waiters;
}
// If we have no waiters, clear the has waiter flag.
if (it == thread_tree.end() || it->GetConditionVariableKey() != cv_key) {
const u32 has_waiter_flag{};
WriteToUser(system, cv_key, std::addressof(has_waiter_flag));
}
}
// Close threads in the array.
for (auto i = 0; i < num_to_close; ++i) {
thread_array[i]->Close();
}
// Close threads in the list.
for (auto it = thread_list.begin(); it != thread_list.end(); it = thread_list.erase(it)) {
(*it)->Close();
}
}
ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
// Prepare to wait.
Thread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout);
// Set the synced object.
cur_thread->SetSyncedObject(nullptr, Svc::ResultTimedOut);
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return Svc::ResultTerminationRequested;
}
// Update the value and process for the next owner.
{
// Remove waiter thread.
s32 num_waiters{};
Thread* next_owner_thread =
cur_thread->RemoveWaiterByKey(std::addressof(num_waiters), addr);
// Update for the next owner thread.
u32 next_value{};
if (next_owner_thread != nullptr) {
// Get the next tag value.
next_value = next_owner_thread->GetAddressKeyValue();
if (num_waiters > 1) {
next_value |= Svc::HandleWaitMask;
}
// Wake up the next owner.
next_owner_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
next_owner_thread->Wakeup();
}
// Write to the cv key.
{
const u32 has_waiter_flag = 1;
WriteToUser(system, key, std::addressof(has_waiter_flag));
// TODO(bunnei): We should call DataMemoryBarrier(..) here.
}
// Write the value to userspace.
if (!WriteToUser(system, addr, std::addressof(next_value))) {
slp.CancelSleep();
return Svc::ResultInvalidCurrentMemory;
}
}
// Update condition variable tracking.
{
cur_thread->SetConditionVariable(std::addressof(thread_tree), addr, key, value);
thread_tree.insert(*cur_thread);
}
// If the timeout is non-zero, set the thread as waiting.
if (timeout != 0) {
cur_thread->SetState(ThreadState::Waiting);
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
cur_thread->SetMutexWaitAddressForDebugging(addr);
}
}
// Cancel the timer wait.
if (timer != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
// Remove from the condition variable.
{
KScopedSchedulerLock sl(kernel);
if (Thread* owner = cur_thread->GetLockOwner(); owner != nullptr) {
owner->RemoveWaiter(cur_thread);
}
if (cur_thread->IsWaitingForConditionVariable()) {
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
cur_thread->ClearConditionVariable();
}
}
// Get the result.
KSynchronizationObject* dummy{};
return cur_thread->GetWaitResult(std::addressof(dummy));
}
} // namespace Kernel

View File

@ -0,0 +1,59 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/assert.h"
#include "common/common_types.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/result.h"
namespace Core {
class System;
}
namespace Kernel {
class KConditionVariable {
public:
using ThreadTree = typename Thread::ConditionVariableThreadTreeType;
explicit KConditionVariable(Core::System& system_);
~KConditionVariable();
// Arbitration
[[nodiscard]] ResultCode SignalToAddress(VAddr addr);
[[nodiscard]] ResultCode WaitForAddress(Handle handle, VAddr addr, u32 value);
// Condition variable
void Signal(u64 cv_key, s32 count);
[[nodiscard]] ResultCode Wait(VAddr addr, u64 key, u32 value, s64 timeout);
private:
[[nodiscard]] Thread* SignalImpl(Thread* thread);
ThreadTree thread_tree;
Core::System& system;
KernelCore& kernel;
};
inline void BeforeUpdatePriority(const KernelCore& kernel, KConditionVariable::ThreadTree* tree,
Thread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
tree->erase(tree->iterator_to(*thread));
}
inline void AfterUpdatePriority(const KernelCore& kernel, KConditionVariable::ThreadTree* tree,
Thread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
tree->insert(*thread);
}
} // namespace Kernel

View File

@ -180,22 +180,22 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
return cores_needing_scheduling;
}
void KScheduler::OnThreadStateChanged(KernelCore& kernel, Thread* thread, u32 old_state) {
void KScheduler::OnThreadStateChanged(KernelCore& kernel, Thread* thread, ThreadState old_state) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Check if the state has changed, because if it hasn't there's nothing to do.
const auto cur_state = thread->scheduling_state;
const auto cur_state = thread->GetRawState();
if (cur_state == old_state) {
return;
}
// Update the priority queues.
if (old_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
if (old_state == ThreadState::Runnable) {
// If we were previously runnable, then we're not runnable now, and we should remove.
GetPriorityQueue(kernel).Remove(thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
} else if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
} else if (cur_state == ThreadState::Runnable) {
// If we're now runnable, then we weren't previously, and we should add.
GetPriorityQueue(kernel).PushBack(thread);
IncrementScheduledCount(thread);
@ -203,13 +203,11 @@ void KScheduler::OnThreadStateChanged(KernelCore& kernel, Thread* thread, u32 ol
}
}
void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, Thread* thread, Thread* current_thread,
u32 old_priority) {
void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, Thread* thread, s32 old_priority) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// If the thread is runnable, we want to change its priority in the queue.
if (thread->scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
if (thread->GetRawState() == ThreadState::Runnable) {
GetPriorityQueue(kernel).ChangePriority(
old_priority, thread == kernel.CurrentScheduler()->GetCurrentThread(), thread);
IncrementScheduledCount(thread);
@ -222,7 +220,7 @@ void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, Thread* thread,
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// If the thread is runnable, we want to change its affinity in the queue.
if (thread->scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
if (thread->GetRawState() == ThreadState::Runnable) {
GetPriorityQueue(kernel).ChangeAffinityMask(old_core, old_affinity, thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
@ -292,7 +290,7 @@ void KScheduler::RotateScheduledQueue(s32 core_id, s32 priority) {
// If the best thread we can choose has a priority the same or worse than ours, try to
// migrate a higher priority thread.
if (best_thread != nullptr && best_thread->GetPriority() >= static_cast<u32>(priority)) {
if (best_thread != nullptr && best_thread->GetPriority() >= priority) {
Thread* suggested = priority_queue.GetSuggestedFront(core_id);
while (suggested != nullptr) {
// If the suggestion's priority is the same as ours, don't bother.
@ -395,8 +393,8 @@ void KScheduler::YieldWithoutCoreMigration() {
{
KScopedSchedulerLock lock(kernel);
const auto cur_state = cur_thread.scheduling_state;
if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
// Put the current thread at the back of the queue.
Thread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
IncrementScheduledCount(std::addressof(cur_thread));
@ -436,8 +434,8 @@ void KScheduler::YieldWithCoreMigration() {
{
KScopedSchedulerLock lock(kernel);
const auto cur_state = cur_thread.scheduling_state;
if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
// Get the current active core.
const s32 core_id = cur_thread.GetActiveCore();
@ -526,8 +524,8 @@ void KScheduler::YieldToAnyThread() {
{
KScopedSchedulerLock lock(kernel);
const auto cur_state = cur_thread.scheduling_state;
if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
// Get the current active core.
const s32 core_id = cur_thread.GetActiveCore();
@ -645,8 +643,7 @@ void KScheduler::Unload(Thread* thread) {
void KScheduler::Reload(Thread* thread) {
if (thread) {
ASSERT_MSG(thread->GetSchedulingStatus() == ThreadSchedStatus::Runnable,
"Thread must be runnable.");
ASSERT_MSG(thread->GetState() == ThreadState::Runnable, "Thread must be runnable.");
// Cancel any outstanding wakeup events for this thread
thread->SetIsRunning(true);
@ -725,7 +722,7 @@ void KScheduler::SwitchToCurrent() {
do {
if (current_thread != nullptr && !current_thread->IsHLEThread()) {
current_thread->context_guard.lock();
if (!current_thread->IsRunnable()) {
if (current_thread->GetRawState() != ThreadState::Runnable) {
current_thread->context_guard.unlock();
break;
}
@ -772,7 +769,7 @@ void KScheduler::Initialize() {
{
KScopedSchedulerLock lock{system.Kernel()};
idle_thread->SetStatus(ThreadStatus::Ready);
idle_thread->SetState(ThreadState::Runnable);
}
}

View File

@ -100,11 +100,10 @@ public:
void YieldToAnyThread();
/// Notify the scheduler a thread's status has changed.
static void OnThreadStateChanged(KernelCore& kernel, Thread* thread, u32 old_state);
static void OnThreadStateChanged(KernelCore& kernel, Thread* thread, ThreadState old_state);
/// Notify the scheduler a thread's priority has changed.
static void OnThreadPriorityChanged(KernelCore& kernel, Thread* thread, Thread* current_thread,
u32 old_priority);
static void OnThreadPriorityChanged(KernelCore& kernel, Thread* thread, s32 old_priority);
/// Notify the scheduler a thread's core and/or affinity mask has changed.
static void OnThreadAffinityMaskChanged(KernelCore& kernel, Thread* thread,

View File

@ -19,7 +19,7 @@ class KernelCore;
template <typename SchedulerType>
class KAbstractSchedulerLock {
public:
explicit KAbstractSchedulerLock(KernelCore& kernel) : kernel{kernel} {}
explicit KAbstractSchedulerLock(KernelCore& kernel_) : kernel{kernel_} {}
bool IsLockedByCurrentThread() const {
return this->owner_thread == kernel.GetCurrentEmuThreadID();

View File

@ -0,0 +1,172 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/common_types.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/thread.h"
namespace Kernel {
ResultCode KSynchronizationObject::Wait(KernelCore& kernel, s32* out_index,
KSynchronizationObject** objects, const s32 num_objects,
s64 timeout) {
// Allocate space on stack for thread nodes.
std::vector<ThreadListNode> thread_nodes(num_objects);
// Prepare for wait.
Thread* thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{
// Setup the scheduling lock and sleep.
KScopedSchedulerLockAndSleep slp(kernel, timer, thread, timeout);
// Check if any of the objects are already signaled.
for (auto i = 0; i < num_objects; ++i) {
ASSERT(objects[i] != nullptr);
if (objects[i]->IsSignaled()) {
*out_index = i;
slp.CancelSleep();
return RESULT_SUCCESS;
}
}
// Check if the timeout is zero.
if (timeout == 0) {
slp.CancelSleep();
return Svc::ResultTimedOut;
}
// Check if the thread should terminate.
if (thread->IsTerminationRequested()) {
slp.CancelSleep();
return Svc::ResultTerminationRequested;
}
// Check if waiting was canceled.
if (thread->IsWaitCancelled()) {
slp.CancelSleep();
thread->ClearWaitCancelled();
return Svc::ResultCancelled;
}
// Add the waiters.
for (auto i = 0; i < num_objects; ++i) {
thread_nodes[i].thread = thread;
thread_nodes[i].next = nullptr;
if (objects[i]->thread_list_tail == nullptr) {
objects[i]->thread_list_head = std::addressof(thread_nodes[i]);
} else {
objects[i]->thread_list_tail->next = std::addressof(thread_nodes[i]);
}
objects[i]->thread_list_tail = std::addressof(thread_nodes[i]);
}
// For debugging only
thread->SetWaitObjectsForDebugging({objects, static_cast<std::size_t>(num_objects)});
// Mark the thread as waiting.
thread->SetCancellable();
thread->SetSyncedObject(nullptr, Svc::ResultTimedOut);
thread->SetState(ThreadState::Waiting);
thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Synchronization);
}
// The lock/sleep is done, so we should be able to get our result.
// Thread is no longer cancellable.
thread->ClearCancellable();
// For debugging only
thread->SetWaitObjectsForDebugging({});
// Cancel the timer as needed.
if (timer != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
// Get the wait result.
ResultCode wait_result{RESULT_SUCCESS};
s32 sync_index = -1;
{
KScopedSchedulerLock lock(kernel);
KSynchronizationObject* synced_obj;
wait_result = thread->GetWaitResult(std::addressof(synced_obj));
for (auto i = 0; i < num_objects; ++i) {
// Unlink the object from the list.
ThreadListNode* prev_ptr =
reinterpret_cast<ThreadListNode*>(std::addressof(objects[i]->thread_list_head));
ThreadListNode* prev_val = nullptr;
ThreadListNode *prev, *tail_prev;
do {
prev = prev_ptr;
prev_ptr = prev_ptr->next;
tail_prev = prev_val;
prev_val = prev_ptr;
} while (prev_ptr != std::addressof(thread_nodes[i]));
if (objects[i]->thread_list_tail == std::addressof(thread_nodes[i])) {
objects[i]->thread_list_tail = tail_prev;
}
prev->next = thread_nodes[i].next;
if (objects[i] == synced_obj) {
sync_index = i;
}
}
}
// Set output.
*out_index = sync_index;
return wait_result;
}
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel) : Object{kernel} {}
KSynchronizationObject ::~KSynchronizationObject() = default;
void KSynchronizationObject::NotifyAvailable(ResultCode result) {
KScopedSchedulerLock lock(kernel);
// If we're not signaled, we've nothing to notify.
if (!this->IsSignaled()) {
return;
}
// Iterate over each thread.
for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
Thread* thread = cur_node->thread;
if (thread->GetState() == ThreadState::Waiting) {
thread->SetSyncedObject(this, result);
thread->SetState(ThreadState::Runnable);
}
}
}
std::vector<Thread*> KSynchronizationObject::GetWaitingThreadsForDebugging() const {
std::vector<Thread*> threads;
// If debugging, dump the list of waiters.
{
KScopedSchedulerLock lock(kernel);
for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
threads.emplace_back(cur_node->thread);
}
}
return threads;
}
} // namespace Kernel

View File

@ -0,0 +1,58 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <vector>
#include "core/hle/kernel/object.h"
#include "core/hle/result.h"
namespace Kernel {
class KernelCore;
class Synchronization;
class Thread;
/// Class that represents a Kernel object that a thread can be waiting on
class KSynchronizationObject : public Object {
public:
struct ThreadListNode {
ThreadListNode* next{};
Thread* thread{};
};
[[nodiscard]] static ResultCode Wait(KernelCore& kernel, s32* out_index,
KSynchronizationObject** objects, const s32 num_objects,
s64 timeout);
[[nodiscard]] virtual bool IsSignaled() const = 0;
[[nodiscard]] std::vector<Thread*> GetWaitingThreadsForDebugging() const;
protected:
explicit KSynchronizationObject(KernelCore& kernel);
virtual ~KSynchronizationObject();
void NotifyAvailable(ResultCode result);
void NotifyAvailable() {
return this->NotifyAvailable(RESULT_SUCCESS);
}
private:
ThreadListNode* thread_list_head{};
ThreadListNode* thread_list_tail{};
};
// Specialization of DynamicObjectCast for KSynchronizationObjects
template <>
inline std::shared_ptr<KSynchronizationObject> DynamicObjectCast<KSynchronizationObject>(
std::shared_ptr<Object> object) {
if (object != nullptr && object->IsWaitable()) {
return std::static_pointer_cast<KSynchronizationObject>(object);
}
return nullptr;
}
} // namespace Kernel

View File

@ -38,7 +38,6 @@
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/service_thread.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/synchronization.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/lock.h"
@ -51,8 +50,7 @@ namespace Kernel {
struct KernelCore::Impl {
explicit Impl(Core::System& system, KernelCore& kernel)
: synchronization{system}, time_manager{system}, global_handle_table{kernel}, system{
system} {}
: time_manager{system}, global_handle_table{kernel}, system{system} {}
void SetMulticore(bool is_multicore) {
this->is_multicore = is_multicore;
@ -307,7 +305,6 @@ struct KernelCore::Impl {
std::vector<std::shared_ptr<Process>> process_list;
Process* current_process = nullptr;
std::unique_ptr<Kernel::GlobalSchedulerContext> global_scheduler_context;
Kernel::Synchronization synchronization;
Kernel::TimeManager time_manager;
std::shared_ptr<ResourceLimit> system_resource_limit;
@ -461,14 +458,6 @@ const std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& Kern
return impl->interrupts;
}
Kernel::Synchronization& KernelCore::Synchronization() {
return impl->synchronization;
}
const Kernel::Synchronization& KernelCore::Synchronization() const {
return impl->synchronization;
}
Kernel::TimeManager& KernelCore::TimeManager() {
return impl->time_manager;
}
@ -613,9 +602,11 @@ void KernelCore::Suspend(bool in_suspention) {
const bool should_suspend = exception_exited || in_suspention;
{
KScopedSchedulerLock lock(*this);
ThreadStatus status = should_suspend ? ThreadStatus::Ready : ThreadStatus::WaitSleep;
const auto state = should_suspend ? ThreadState::Runnable : ThreadState::Waiting;
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
impl->suspend_threads[i]->SetStatus(status);
impl->suspend_threads[i]->SetState(state);
impl->suspend_threads[i]->SetWaitReasonForDebugging(
ThreadWaitReasonForDebugging::Suspended);
}
}
}

View File

@ -33,7 +33,6 @@ template <typename T>
class SlabHeap;
} // namespace Memory
class AddressArbiter;
class ClientPort;
class GlobalSchedulerContext;
class HandleTable;
@ -129,12 +128,6 @@ public:
/// Gets the an instance of the current physical CPU core.
const Kernel::PhysicalCore& CurrentPhysicalCore() const;
/// Gets the an instance of the Synchronization Interface.
Kernel::Synchronization& Synchronization();
/// Gets the an instance of the Synchronization Interface.
const Kernel::Synchronization& Synchronization() const;
/// Gets the an instance of the TimeManager Interface.
Kernel::TimeManager& TimeManager();

View File

@ -5,9 +5,28 @@
#pragma once
#include "common/common_types.h"
#include "core/device_memory.h"
namespace Kernel::Memory {
constexpr std::size_t KernelAslrAlignment = 2 * 1024 * 1024;
constexpr std::size_t KernelVirtualAddressSpaceWidth = 1ULL << 39;
constexpr std::size_t KernelPhysicalAddressSpaceWidth = 1ULL << 48;
constexpr std::size_t KernelVirtualAddressSpaceBase = 0ULL - KernelVirtualAddressSpaceWidth;
constexpr std::size_t KernelVirtualAddressSpaceEnd =
KernelVirtualAddressSpaceBase + (KernelVirtualAddressSpaceWidth - KernelAslrAlignment);
constexpr std::size_t KernelVirtualAddressSpaceLast = KernelVirtualAddressSpaceEnd - 1;
constexpr std::size_t KernelVirtualAddressSpaceSize =
KernelVirtualAddressSpaceEnd - KernelVirtualAddressSpaceBase;
constexpr bool IsKernelAddressKey(VAddr key) {
return KernelVirtualAddressSpaceBase <= key && key <= KernelVirtualAddressSpaceLast;
}
constexpr bool IsKernelAddress(VAddr address) {
return KernelVirtualAddressSpaceBase <= address && address < KernelVirtualAddressSpaceEnd;
}
class MemoryRegion final {
friend class MemoryLayout;

View File

@ -1,170 +0,0 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <memory>
#include <utility>
#include <vector>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/result.h"
#include "core/memory.h"
namespace Kernel {
/// Returns the number of threads that are waiting for a mutex, and the highest priority one among
/// those.
static std::pair<std::shared_ptr<Thread>, u32> GetHighestPriorityMutexWaitingThread(
const std::shared_ptr<Thread>& current_thread, VAddr mutex_addr) {
std::shared_ptr<Thread> highest_priority_thread;
u32 num_waiters = 0;
for (const auto& thread : current_thread->GetMutexWaitingThreads()) {
if (thread->GetMutexWaitAddress() != mutex_addr)
continue;
++num_waiters;
if (highest_priority_thread == nullptr ||
thread->GetPriority() < highest_priority_thread->GetPriority()) {
highest_priority_thread = thread;
}
}
return {highest_priority_thread, num_waiters};
}
/// Update the mutex owner field of all threads waiting on the mutex to point to the new owner.
static void TransferMutexOwnership(VAddr mutex_addr, std::shared_ptr<Thread> current_thread,
std::shared_ptr<Thread> new_owner) {
current_thread->RemoveMutexWaiter(new_owner);
const auto threads = current_thread->GetMutexWaitingThreads();
for (const auto& thread : threads) {
if (thread->GetMutexWaitAddress() != mutex_addr)
continue;
ASSERT(thread->GetLockOwner() == current_thread.get());
current_thread->RemoveMutexWaiter(thread);
if (new_owner != thread)
new_owner->AddMutexWaiter(thread);
}
}
Mutex::Mutex(Core::System& system) : system{system} {}
Mutex::~Mutex() = default;
ResultCode Mutex::TryAcquire(VAddr address, Handle holding_thread_handle,
Handle requesting_thread_handle) {
// The mutex address must be 4-byte aligned
if ((address % sizeof(u32)) != 0) {
LOG_ERROR(Kernel, "Address is not 4-byte aligned! address={:016X}", address);
return ERR_INVALID_ADDRESS;
}
auto& kernel = system.Kernel();
std::shared_ptr<Thread> current_thread =
SharedFrom(kernel.CurrentScheduler()->GetCurrentThread());
{
KScopedSchedulerLock lock(kernel);
// The mutex address must be 4-byte aligned
if ((address % sizeof(u32)) != 0) {
return ERR_INVALID_ADDRESS;
}
const auto& handle_table = kernel.CurrentProcess()->GetHandleTable();
std::shared_ptr<Thread> holding_thread = handle_table.Get<Thread>(holding_thread_handle);
std::shared_ptr<Thread> requesting_thread =
handle_table.Get<Thread>(requesting_thread_handle);
// TODO(Subv): It is currently unknown if it is possible to lock a mutex in behalf of
// another thread.
ASSERT(requesting_thread == current_thread);
current_thread->SetSynchronizationResults(nullptr, RESULT_SUCCESS);
const u32 addr_value = system.Memory().Read32(address);
// If the mutex isn't being held, just return success.
if (addr_value != (holding_thread_handle | Mutex::MutexHasWaitersFlag)) {
return RESULT_SUCCESS;
}
if (holding_thread == nullptr) {
return ERR_INVALID_HANDLE;
}
// Wait until the mutex is released
current_thread->SetMutexWaitAddress(address);
current_thread->SetWaitHandle(requesting_thread_handle);
current_thread->SetStatus(ThreadStatus::WaitMutex);
// Update the lock holder thread's priority to prevent priority inversion.
holding_thread->AddMutexWaiter(current_thread);
}
{
KScopedSchedulerLock lock(kernel);
auto* owner = current_thread->GetLockOwner();
if (owner != nullptr) {
owner->RemoveMutexWaiter(current_thread);
}
}
return current_thread->GetSignalingResult();
}
std::pair<ResultCode, std::shared_ptr<Thread>> Mutex::Unlock(std::shared_ptr<Thread> owner,
VAddr address) {
// The mutex address must be 4-byte aligned
if ((address % sizeof(u32)) != 0) {
LOG_ERROR(Kernel, "Address is not 4-byte aligned! address={:016X}", address);
return {ERR_INVALID_ADDRESS, nullptr};
}
auto [new_owner, num_waiters] = GetHighestPriorityMutexWaitingThread(owner, address);
if (new_owner == nullptr) {
system.Memory().Write32(address, 0);
return {RESULT_SUCCESS, nullptr};
}
// Transfer the ownership of the mutex from the previous owner to the new one.
TransferMutexOwnership(address, owner, new_owner);
u32 mutex_value = new_owner->GetWaitHandle();
if (num_waiters >= 2) {
// Notify the guest that there are still some threads waiting for the mutex
mutex_value |= Mutex::MutexHasWaitersFlag;
}
new_owner->SetSynchronizationResults(nullptr, RESULT_SUCCESS);
new_owner->SetLockOwner(nullptr);
new_owner->ResumeFromWait();
system.Memory().Write32(address, mutex_value);
return {RESULT_SUCCESS, new_owner};
}
ResultCode Mutex::Release(VAddr address) {
auto& kernel = system.Kernel();
KScopedSchedulerLock lock(kernel);
std::shared_ptr<Thread> current_thread =
SharedFrom(kernel.CurrentScheduler()->GetCurrentThread());
auto [result, new_owner] = Unlock(current_thread, address);
if (result != RESULT_SUCCESS && new_owner != nullptr) {
new_owner->SetSynchronizationResults(nullptr, result);
}
return result;
}
} // namespace Kernel

View File

@ -1,42 +0,0 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
union ResultCode;
namespace Core {
class System;
}
namespace Kernel {
class Mutex final {
public:
explicit Mutex(Core::System& system);
~Mutex();
/// Flag that indicates that a mutex still has threads waiting for it.
static constexpr u32 MutexHasWaitersFlag = 0x40000000;
/// Mask of the bits in a mutex address value that contain the mutex owner.
static constexpr u32 MutexOwnerMask = 0xBFFFFFFF;
/// Attempts to acquire a mutex at the specified address.
ResultCode TryAcquire(VAddr address, Handle holding_thread_handle,
Handle requesting_thread_handle);
/// Unlocks a mutex for owner at address
std::pair<ResultCode, std::shared_ptr<Thread>> Unlock(std::shared_ptr<Thread> owner,
VAddr address);
/// Releases the mutex at the specified address.
ResultCode Release(VAddr address);
private:
Core::System& system;
};
} // namespace Kernel

View File

@ -50,6 +50,11 @@ public:
}
virtual HandleType GetHandleType() const = 0;
void Close() {
// TODO(bunnei): This is a placeholder to decrement the reference count, which we will use
// when we implement KAutoObject instead of using shared_ptr.
}
/**
* Check if a thread can wait on the object
* @return True if a thread can wait on the object, otherwise false

View File

@ -55,7 +55,7 @@ void SetupMainThread(Core::System& system, Process& owner_process, u32 priority,
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
{
KScopedSchedulerLock lock{kernel};
thread->SetStatus(ThreadStatus::Ready);
thread->SetState(ThreadState::Runnable);
}
}
} // Anonymous namespace
@ -162,48 +162,6 @@ u64 Process::GetTotalPhysicalMemoryUsedWithoutSystemResource() const {
return GetTotalPhysicalMemoryUsed() - GetSystemResourceUsage();
}
void Process::InsertConditionVariableThread(std::shared_ptr<Thread> thread) {
VAddr cond_var_addr = thread->GetCondVarWaitAddress();
std::list<std::shared_ptr<Thread>>& thread_list = cond_var_threads[cond_var_addr];
auto it = thread_list.begin();
while (it != thread_list.end()) {
const std::shared_ptr<Thread> current_thread = *it;
if (current_thread->GetPriority() > thread->GetPriority()) {
thread_list.insert(it, thread);
return;
}
++it;
}
thread_list.push_back(thread);
}
void Process::RemoveConditionVariableThread(std::shared_ptr<Thread> thread) {
VAddr cond_var_addr = thread->GetCondVarWaitAddress();
std::list<std::shared_ptr<Thread>>& thread_list = cond_var_threads[cond_var_addr];
auto it = thread_list.begin();
while (it != thread_list.end()) {
const std::shared_ptr<Thread> current_thread = *it;
if (current_thread.get() == thread.get()) {
thread_list.erase(it);
return;
}
++it;
}
}
std::vector<std::shared_ptr<Thread>> Process::GetConditionVariableThreads(
const VAddr cond_var_addr) {
std::vector<std::shared_ptr<Thread>> result{};
std::list<std::shared_ptr<Thread>>& thread_list = cond_var_threads[cond_var_addr];
auto it = thread_list.begin();
while (it != thread_list.end()) {
std::shared_ptr<Thread> current_thread = *it;
result.push_back(current_thread);
++it;
}
return result;
}
void Process::RegisterThread(const Thread* thread) {
thread_list.push_back(thread);
}
@ -318,7 +276,7 @@ void Process::PrepareForTermination() {
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->GetStatus() == ThreadStatus::WaitSynch,
ASSERT_MSG(thread->GetState() == ThreadState::Waiting,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop();
@ -406,21 +364,18 @@ void Process::LoadModule(CodeSet code_set, VAddr base_addr) {
ReprotectSegment(code_set.DataSegment(), Memory::MemoryPermission::ReadAndWrite);
}
bool Process::IsSignaled() const {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
return is_signaled;
}
Process::Process(Core::System& system)
: SynchronizationObject{system.Kernel()}, page_table{std::make_unique<Memory::PageTable>(
system)},
handle_table{system.Kernel()}, address_arbiter{system}, mutex{system}, system{system} {}
: KSynchronizationObject{system.Kernel()},
page_table{std::make_unique<Memory::PageTable>(system)}, handle_table{system.Kernel()},
address_arbiter{system}, condition_var{system}, system{system} {}
Process::~Process() = default;
void Process::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "Object unavailable!");
}
bool Process::ShouldWait(const Thread* thread) const {
return !is_signaled;
}
void Process::ChangeStatus(ProcessStatus new_status) {
if (status == new_status) {
return;
@ -428,7 +383,7 @@ void Process::ChangeStatus(ProcessStatus new_status) {
status = new_status;
is_signaled = true;
Signal();
NotifyAvailable();
}
ResultCode Process::AllocateMainThreadStack(std::size_t stack_size) {

View File

@ -11,11 +11,11 @@
#include <unordered_map>
#include <vector>
#include "common/common_types.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/process_capability.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/result.h"
namespace Core {
@ -63,7 +63,7 @@ enum class ProcessStatus {
DebugBreak,
};
class Process final : public SynchronizationObject {
class Process final : public KSynchronizationObject {
public:
explicit Process(Core::System& system);
~Process() override;
@ -123,24 +123,30 @@ public:
return handle_table;
}
/// Gets a reference to the process' address arbiter.
AddressArbiter& GetAddressArbiter() {
return address_arbiter;
ResultCode SignalToAddress(VAddr address) {
return condition_var.SignalToAddress(address);
}
/// Gets a const reference to the process' address arbiter.
const AddressArbiter& GetAddressArbiter() const {
return address_arbiter;
ResultCode WaitForAddress(Handle handle, VAddr address, u32 tag) {
return condition_var.WaitForAddress(handle, address, tag);
}
/// Gets a reference to the process' mutex lock.
Mutex& GetMutex() {
return mutex;
void SignalConditionVariable(u64 cv_key, int32_t count) {
return condition_var.Signal(cv_key, count);
}
/// Gets a const reference to the process' mutex lock
const Mutex& GetMutex() const {
return mutex;
ResultCode WaitConditionVariable(VAddr address, u64 cv_key, u32 tag, s64 ns) {
return condition_var.Wait(address, cv_key, tag, ns);
}
ResultCode SignalAddressArbiter(VAddr address, Svc::SignalType signal_type, s32 value,
s32 count) {
return address_arbiter.SignalToAddress(address, signal_type, value, count);
}
ResultCode WaitAddressArbiter(VAddr address, Svc::ArbitrationType arb_type, s32 value,
s64 timeout) {
return address_arbiter.WaitForAddress(address, arb_type, value, timeout);
}
/// Gets the address to the process' dedicated TLS region.
@ -250,15 +256,6 @@ public:
return thread_list;
}
/// Insert a thread into the condition variable wait container
void InsertConditionVariableThread(std::shared_ptr<Thread> thread);
/// Remove a thread from the condition variable wait container
void RemoveConditionVariableThread(std::shared_ptr<Thread> thread);
/// Obtain all condition variable threads waiting for some address
std::vector<std::shared_ptr<Thread>> GetConditionVariableThreads(VAddr cond_var_addr);
/// Registers a thread as being created under this process,
/// adding it to this process' thread list.
void RegisterThread(const Thread* thread);
@ -304,6 +301,8 @@ public:
void LoadModule(CodeSet code_set, VAddr base_addr);
bool IsSignaled() const override;
///////////////////////////////////////////////////////////////////////////////////////////////
// Thread-local storage management
@ -314,12 +313,6 @@ public:
void FreeTLSRegion(VAddr tls_address);
private:
/// Checks if the specified thread should wait until this process is available.
bool ShouldWait(const Thread* thread) const override;
/// Acquires/locks this process for the specified thread if it's available.
void Acquire(Thread* thread) override;
/// Changes the process status. If the status is different
/// from the current process status, then this will trigger
/// a process signal.
@ -373,12 +366,12 @@ private:
HandleTable handle_table;
/// Per-process address arbiter.
AddressArbiter address_arbiter;
KAddressArbiter address_arbiter;
/// The per-process mutex lock instance used for handling various
/// forms of services, such as lock arbitration, and condition
/// variable related facilities.
Mutex mutex;
KConditionVariable condition_var;
/// Address indicating the location of the process' dedicated TLS region.
VAddr tls_region_address = 0;
@ -389,9 +382,6 @@ private:
/// List of threads that are running with this process as their owner.
std::list<const Thread*> thread_list;
/// List of threads waiting for a condition variable
std::unordered_map<VAddr, std::list<std::shared_ptr<Thread>>> cond_var_threads;
/// Address of the top of the main thread's stack
VAddr main_thread_stack_top{};
@ -410,6 +400,8 @@ private:
/// Schedule count of this process
s64 schedule_count{};
bool is_signaled{};
/// System context
Core::System& system;
};

View File

@ -14,24 +14,22 @@
namespace Kernel {
ReadableEvent::ReadableEvent(KernelCore& kernel) : SynchronizationObject{kernel} {}
ReadableEvent::ReadableEvent(KernelCore& kernel) : KSynchronizationObject{kernel} {}
ReadableEvent::~ReadableEvent() = default;
bool ReadableEvent::ShouldWait(const Thread* thread) const {
return !is_signaled;
}
void ReadableEvent::Acquire(Thread* thread) {
ASSERT_MSG(IsSignaled(), "object unavailable!");
}
void ReadableEvent::Signal() {
if (is_signaled) {
return;
}
is_signaled = true;
SynchronizationObject::Signal();
NotifyAvailable();
}
bool ReadableEvent::IsSignaled() const {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
return is_signaled;
}
void ReadableEvent::Clear() {

View File

@ -4,8 +4,8 @@
#pragma once
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/synchronization_object.h"
union ResultCode;
@ -14,7 +14,7 @@ namespace Kernel {
class KernelCore;
class WritableEvent;
class ReadableEvent final : public SynchronizationObject {
class ReadableEvent final : public KSynchronizationObject {
friend class WritableEvent;
public:
@ -32,9 +32,6 @@ public:
return HANDLE_TYPE;
}
bool ShouldWait(const Thread* thread) const override;
void Acquire(Thread* thread) override;
/// Unconditionally clears the readable event's state.
void Clear();
@ -46,11 +43,14 @@ public:
/// then ERR_INVALID_STATE will be returned.
ResultCode Reset();
void Signal() override;
void Signal();
bool IsSignaled() const override;
private:
explicit ReadableEvent(KernelCore& kernel);
bool is_signaled{};
std::string name; ///< Name of event (optional)
};

View File

@ -13,7 +13,7 @@
namespace Kernel {
ServerPort::ServerPort(KernelCore& kernel) : SynchronizationObject{kernel} {}
ServerPort::ServerPort(KernelCore& kernel) : KSynchronizationObject{kernel} {}
ServerPort::~ServerPort() = default;
ResultVal<std::shared_ptr<ServerSession>> ServerPort::Accept() {
@ -28,15 +28,9 @@ ResultVal<std::shared_ptr<ServerSession>> ServerPort::Accept() {
void ServerPort::AppendPendingSession(std::shared_ptr<ServerSession> pending_session) {
pending_sessions.push_back(std::move(pending_session));
}
bool ServerPort::ShouldWait(const Thread* thread) const {
// If there are no pending sessions, we wait until a new one is added.
return pending_sessions.empty();
}
void ServerPort::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
if (pending_sessions.size() == 1) {
NotifyAvailable();
}
}
bool ServerPort::IsSignaled() const {

View File

@ -9,8 +9,8 @@
#include <utility>
#include <vector>
#include "common/common_types.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/result.h"
namespace Kernel {
@ -20,7 +20,7 @@ class KernelCore;
class ServerSession;
class SessionRequestHandler;
class ServerPort final : public SynchronizationObject {
class ServerPort final : public KSynchronizationObject {
public:
explicit ServerPort(KernelCore& kernel);
~ServerPort() override;
@ -79,9 +79,6 @@ public:
/// waiting to be accepted by this port.
void AppendPendingSession(std::shared_ptr<ServerSession> pending_session);
bool ShouldWait(const Thread* thread) const override;
void Acquire(Thread* thread) override;
bool IsSignaled() const override;
private:

View File

@ -24,7 +24,7 @@
namespace Kernel {
ServerSession::ServerSession(KernelCore& kernel) : SynchronizationObject{kernel} {}
ServerSession::ServerSession(KernelCore& kernel) : KSynchronizationObject{kernel} {}
ServerSession::~ServerSession() {
kernel.ReleaseServiceThread(service_thread);
@ -42,16 +42,6 @@ ResultVal<std::shared_ptr<ServerSession>> ServerSession::Create(KernelCore& kern
return MakeResult(std::move(session));
}
bool ServerSession::ShouldWait(const Thread* thread) const {
// Closed sessions should never wait, an error will be returned from svcReplyAndReceive.
if (!parent->Client()) {
return false;
}
// Wait if we have no pending requests, or if we're currently handling a request.
return pending_requesting_threads.empty() || currently_handling != nullptr;
}
bool ServerSession::IsSignaled() const {
// Closed sessions should never wait, an error will be returned from svcReplyAndReceive.
if (!parent->Client()) {
@ -62,15 +52,6 @@ bool ServerSession::IsSignaled() const {
return !pending_requesting_threads.empty() && currently_handling == nullptr;
}
void ServerSession::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
// We are now handling a request, pop it from the stack.
// TODO(Subv): What happens if the client endpoint is closed before any requests are made?
ASSERT(!pending_requesting_threads.empty());
currently_handling = pending_requesting_threads.back();
pending_requesting_threads.pop_back();
}
void ServerSession::ClientDisconnected() {
// We keep a shared pointer to the hle handler to keep it alive throughout
// the call to ClientDisconnected, as ClientDisconnected invalidates the
@ -172,7 +153,7 @@ ResultCode ServerSession::CompleteSyncRequest(HLERequestContext& context) {
{
KScopedSchedulerLock lock(kernel);
if (!context.IsThreadWaiting()) {
context.GetThread().ResumeFromWait();
context.GetThread().Wakeup();
context.GetThread().SetSynchronizationResults(nullptr, result);
}
}

View File

@ -10,8 +10,8 @@
#include <vector>
#include "common/threadsafe_queue.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/service_thread.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/result.h"
namespace Core::Memory {
@ -43,7 +43,7 @@ class Thread;
* After the server replies to the request, the response is marshalled back to the caller's
* TLS buffer and control is transferred back to it.
*/
class ServerSession final : public SynchronizationObject {
class ServerSession final : public KSynchronizationObject {
friend class ServiceThread;
public:
@ -77,8 +77,6 @@ public:
return parent.get();
}
bool IsSignaled() const override;
/**
* Sets the HLE handler for the session. This handler will be called to service IPC requests
* instead of the regular IPC machinery. (The regular IPC machinery is currently not
@ -100,10 +98,6 @@ public:
ResultCode HandleSyncRequest(std::shared_ptr<Thread> thread, Core::Memory::Memory& memory,
Core::Timing::CoreTiming& core_timing);
bool ShouldWait(const Thread* thread) const override;
void Acquire(Thread* thread) override;
/// Called when a client disconnection occurs.
void ClientDisconnected();
@ -130,6 +124,8 @@ public:
convert_to_domain = true;
}
bool IsSignaled() const override;
private:
/// Queues a sync request from the emulated application.
ResultCode QueueSyncRequest(std::shared_ptr<Thread> thread, Core::Memory::Memory& memory);

View File

@ -9,7 +9,7 @@
namespace Kernel {
Session::Session(KernelCore& kernel) : SynchronizationObject{kernel} {}
Session::Session(KernelCore& kernel) : KSynchronizationObject{kernel} {}
Session::~Session() = default;
Session::SessionPair Session::Create(KernelCore& kernel, std::string name) {
@ -24,18 +24,9 @@ Session::SessionPair Session::Create(KernelCore& kernel, std::string name) {
return std::make_pair(std::move(client_session), std::move(server_session));
}
bool Session::ShouldWait(const Thread* thread) const {
UNIMPLEMENTED();
return {};
}
bool Session::IsSignaled() const {
UNIMPLEMENTED();
return true;
}
void Session::Acquire(Thread* thread) {
UNIMPLEMENTED();
}
} // namespace Kernel

View File

@ -8,7 +8,7 @@
#include <string>
#include <utility>
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/kernel/k_synchronization_object.h"
namespace Kernel {
@ -19,7 +19,7 @@ class ServerSession;
* Parent structure to link the client and server endpoints of a session with their associated
* client port.
*/
class Session final : public SynchronizationObject {
class Session final : public KSynchronizationObject {
public:
explicit Session(KernelCore& kernel);
~Session() override;
@ -37,12 +37,8 @@ public:
return HANDLE_TYPE;
}
bool ShouldWait(const Thread* thread) const override;
bool IsSignaled() const override;
void Acquire(Thread* thread) override;
std::shared_ptr<ClientSession> Client() {
if (auto result{client.lock()}) {
return result;

View File

@ -10,6 +10,7 @@
#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
@ -19,26 +20,28 @@
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/cpu_manager.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/client_session.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/memory/memory_block.h"
#include "core/hle/kernel/memory/memory_layout.h"
#include "core/hle/kernel/memory/page_table.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/readable_event.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/kernel/svc_wrap.h"
#include "core/hle/kernel/synchronization.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/kernel/transfer_memory.h"
@ -343,27 +346,11 @@ static ResultCode SendSyncRequest(Core::System& system, Handle handle) {
auto thread = kernel.CurrentScheduler()->GetCurrentThread();
{
KScopedSchedulerLock lock(kernel);
thread->InvalidateHLECallback();
thread->SetStatus(ThreadStatus::WaitIPC);
thread->SetState(ThreadState::Waiting);
thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
session->SendSyncRequest(SharedFrom(thread), system.Memory(), system.CoreTiming());
}
if (thread->HasHLECallback()) {
Handle event_handle = thread->GetHLETimeEvent();
if (event_handle != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(event_handle);
}
{
KScopedSchedulerLock lock(kernel);
auto* sync_object = thread->GetHLESyncObject();
sync_object->RemoveWaitingThread(SharedFrom(thread));
}
thread->InvokeHLECallback(SharedFrom(thread));
}
return thread->GetSignalingResult();
}
@ -436,7 +423,7 @@ static ResultCode GetProcessId32(Core::System& system, u32* process_id_low, u32*
}
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization(Core::System& system, Handle* index, VAddr handles_address,
static ResultCode WaitSynchronization(Core::System& system, s32* index, VAddr handles_address,
u64 handle_count, s64 nano_seconds) {
LOG_TRACE(Kernel_SVC, "called handles_address=0x{:X}, handle_count={}, nano_seconds={}",
handles_address, handle_count, nano_seconds);
@ -458,28 +445,26 @@ static ResultCode WaitSynchronization(Core::System& system, Handle* index, VAddr
}
auto& kernel = system.Kernel();
Thread::ThreadSynchronizationObjects objects(handle_count);
std::vector<KSynchronizationObject*> objects(handle_count);
const auto& handle_table = kernel.CurrentProcess()->GetHandleTable();
for (u64 i = 0; i < handle_count; ++i) {
const Handle handle = memory.Read32(handles_address + i * sizeof(Handle));
const auto object = handle_table.Get<SynchronizationObject>(handle);
const auto object = handle_table.Get<KSynchronizationObject>(handle);
if (object == nullptr) {
LOG_ERROR(Kernel_SVC, "Object is a nullptr");
return ERR_INVALID_HANDLE;
}
objects[i] = object;
objects[i] = object.get();
}
auto& synchronization = kernel.Synchronization();
const auto [result, handle_result] = synchronization.WaitFor(objects, nano_seconds);
*index = handle_result;
return result;
return KSynchronizationObject::Wait(kernel, index, objects.data(),
static_cast<s32>(objects.size()), nano_seconds);
}
static ResultCode WaitSynchronization32(Core::System& system, u32 timeout_low, u32 handles_address,
s32 handle_count, u32 timeout_high, Handle* index) {
s32 handle_count, u32 timeout_high, s32* index) {
const s64 nano_seconds{(static_cast<s64>(timeout_high) << 32) | static_cast<s64>(timeout_low)};
return WaitSynchronization(system, index, handles_address, handle_count, nano_seconds);
}
@ -504,56 +489,37 @@ static ResultCode CancelSynchronization32(Core::System& system, Handle thread_ha
return CancelSynchronization(system, thread_handle);
}
/// Attempts to locks a mutex, creating it if it does not already exist
static ResultCode ArbitrateLock(Core::System& system, Handle holding_thread_handle,
VAddr mutex_addr, Handle requesting_thread_handle) {
LOG_TRACE(Kernel_SVC,
"called holding_thread_handle=0x{:08X}, mutex_addr=0x{:X}, "
"requesting_current_thread_handle=0x{:08X}",
holding_thread_handle, mutex_addr, requesting_thread_handle);
/// Attempts to locks a mutex
static ResultCode ArbitrateLock(Core::System& system, Handle thread_handle, VAddr address,
u32 tag) {
LOG_TRACE(Kernel_SVC, "called thread_handle=0x{:08X}, address=0x{:X}, tag=0x{:08X}",
thread_handle, address, tag);
if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS_STATE;
}
// Validate the input address.
R_UNLESS(!Memory::IsKernelAddress(address), Svc::ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(u32)), Svc::ResultInvalidAddress);
if (!Common::IsWordAligned(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is not word aligned, mutex_addr={:016X}", mutex_addr);
return ERR_INVALID_ADDRESS;
}
auto* const current_process = system.Kernel().CurrentProcess();
return current_process->GetMutex().TryAcquire(mutex_addr, holding_thread_handle,
requesting_thread_handle);
return system.Kernel().CurrentProcess()->WaitForAddress(thread_handle, address, tag);
}
static ResultCode ArbitrateLock32(Core::System& system, Handle holding_thread_handle,
u32 mutex_addr, Handle requesting_thread_handle) {
return ArbitrateLock(system, holding_thread_handle, mutex_addr, requesting_thread_handle);
static ResultCode ArbitrateLock32(Core::System& system, Handle thread_handle, u32 address,
u32 tag) {
return ArbitrateLock(system, thread_handle, address, tag);
}
/// Unlock a mutex
static ResultCode ArbitrateUnlock(Core::System& system, VAddr mutex_addr) {
LOG_TRACE(Kernel_SVC, "called mutex_addr=0x{:X}", mutex_addr);
static ResultCode ArbitrateUnlock(Core::System& system, VAddr address) {
LOG_TRACE(Kernel_SVC, "called address=0x{:X}", address);
if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS_STATE;
}
// Validate the input address.
R_UNLESS(!Memory::IsKernelAddress(address), Svc::ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(u32)), Svc::ResultInvalidAddress);
if (!Common::IsWordAligned(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is not word aligned, mutex_addr={:016X}", mutex_addr);
return ERR_INVALID_ADDRESS;
}
auto* const current_process = system.Kernel().CurrentProcess();
return current_process->GetMutex().Release(mutex_addr);
return system.Kernel().CurrentProcess()->SignalToAddress(address);
}
static ResultCode ArbitrateUnlock32(Core::System& system, u32 mutex_addr) {
return ArbitrateUnlock(system, mutex_addr);
static ResultCode ArbitrateUnlock32(Core::System& system, u32 address) {
return ArbitrateUnlock(system, address);
}
enum class BreakType : u32 {
@ -1180,7 +1146,7 @@ static ResultCode SetThreadPriority(Core::System& system, Handle handle, u32 pri
return ERR_INVALID_HANDLE;
}
thread->SetPriority(priority);
thread->SetBasePriority(priority);
return RESULT_SUCCESS;
}
@ -1559,7 +1525,7 @@ static ResultCode StartThread(Core::System& system, Handle thread_handle) {
return ERR_INVALID_HANDLE;
}
ASSERT(thread->GetStatus() == ThreadStatus::Dormant);
ASSERT(thread->GetState() == ThreadState::Initialized);
return thread->Start();
}
@ -1620,224 +1586,135 @@ static void SleepThread32(Core::System& system, u32 nanoseconds_low, u32 nanosec
}
/// Wait process wide key atomic
static ResultCode WaitProcessWideKeyAtomic(Core::System& system, VAddr mutex_addr,
VAddr condition_variable_addr, Handle thread_handle,
s64 nano_seconds) {
LOG_TRACE(
Kernel_SVC,
"called mutex_addr={:X}, condition_variable_addr={:X}, thread_handle=0x{:08X}, timeout={}",
mutex_addr, condition_variable_addr, thread_handle, nano_seconds);
static ResultCode WaitProcessWideKeyAtomic(Core::System& system, VAddr address, VAddr cv_key,
u32 tag, s64 timeout_ns) {
LOG_TRACE(Kernel_SVC, "called address={:X}, cv_key={:X}, tag=0x{:08X}, timeout_ns={}", address,
cv_key, tag, timeout_ns);
if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) {
LOG_ERROR(
Kernel_SVC,
"Given mutex address must not be within the kernel address space. address=0x{:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS_STATE;
}
// Validate input.
R_UNLESS(!Memory::IsKernelAddress(address), Svc::ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(int32_t)), Svc::ResultInvalidAddress);
if (!Common::IsWordAligned(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Given mutex address must be word-aligned. address=0x{:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS;
}
ASSERT(condition_variable_addr == Common::AlignDown(condition_variable_addr, 4));
auto& kernel = system.Kernel();
Handle event_handle;
Thread* current_thread = kernel.CurrentScheduler()->GetCurrentThread();
auto* const current_process = kernel.CurrentProcess();
{
KScopedSchedulerLockAndSleep lock(kernel, event_handle, current_thread, nano_seconds);
const auto& handle_table = current_process->GetHandleTable();
std::shared_ptr<Thread> thread = handle_table.Get<Thread>(thread_handle);
ASSERT(thread);
current_thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT);
if (thread->IsPendingTermination()) {
lock.CancelSleep();
return ERR_THREAD_TERMINATING;
// Convert timeout from nanoseconds to ticks.
s64 timeout{};
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
const auto release_result = current_process->GetMutex().Release(mutex_addr);
if (release_result.IsError()) {
lock.CancelSleep();
return release_result;
}
if (nano_seconds == 0) {
lock.CancelSleep();
return RESULT_TIMEOUT;
}
current_thread->SetCondVarWaitAddress(condition_variable_addr);
current_thread->SetMutexWaitAddress(mutex_addr);
current_thread->SetWaitHandle(thread_handle);
current_thread->SetStatus(ThreadStatus::WaitCondVar);
current_process->InsertConditionVariableThread(SharedFrom(current_thread));
} else {
timeout = timeout_ns;
}
if (event_handle != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(event_handle);
}
{
KScopedSchedulerLock lock(kernel);
auto* owner = current_thread->GetLockOwner();
if (owner != nullptr) {
owner->RemoveMutexWaiter(SharedFrom(current_thread));
}
current_process->RemoveConditionVariableThread(SharedFrom(current_thread));
}
// Note: Deliberately don't attempt to inherit the lock owner's priority.
return current_thread->GetSignalingResult();
// Wait on the condition variable.
return system.Kernel().CurrentProcess()->WaitConditionVariable(
address, Common::AlignDown(cv_key, sizeof(u32)), tag, timeout);
}
static ResultCode WaitProcessWideKeyAtomic32(Core::System& system, u32 mutex_addr,
u32 condition_variable_addr, Handle thread_handle,
u32 nanoseconds_low, u32 nanoseconds_high) {
const auto nanoseconds = static_cast<s64>(nanoseconds_low | (u64{nanoseconds_high} << 32));
return WaitProcessWideKeyAtomic(system, mutex_addr, condition_variable_addr, thread_handle,
nanoseconds);
static ResultCode WaitProcessWideKeyAtomic32(Core::System& system, u32 address, u32 cv_key, u32 tag,
u32 timeout_ns_low, u32 timeout_ns_high) {
const auto timeout_ns = static_cast<s64>(timeout_ns_low | (u64{timeout_ns_high} << 32));
return WaitProcessWideKeyAtomic(system, address, cv_key, tag, timeout_ns);
}
/// Signal process wide key
static void SignalProcessWideKey(Core::System& system, VAddr condition_variable_addr, s32 target) {
LOG_TRACE(Kernel_SVC, "called, condition_variable_addr=0x{:X}, target=0x{:08X}",
condition_variable_addr, target);
static void SignalProcessWideKey(Core::System& system, VAddr cv_key, s32 count) {
LOG_TRACE(Kernel_SVC, "called, cv_key=0x{:X}, count=0x{:08X}", cv_key, count);
ASSERT(condition_variable_addr == Common::AlignDown(condition_variable_addr, 4));
// Signal the condition variable.
return system.Kernel().CurrentProcess()->SignalConditionVariable(
Common::AlignDown(cv_key, sizeof(u32)), count);
}
// Retrieve a list of all threads that are waiting for this condition variable.
auto& kernel = system.Kernel();
KScopedSchedulerLock lock(kernel);
auto* const current_process = kernel.CurrentProcess();
std::vector<std::shared_ptr<Thread>> waiting_threads =
current_process->GetConditionVariableThreads(condition_variable_addr);
static void SignalProcessWideKey32(Core::System& system, u32 cv_key, s32 count) {
SignalProcessWideKey(system, cv_key, count);
}
// Only process up to 'target' threads, unless 'target' is less equal 0, in which case process
// them all.
std::size_t last = waiting_threads.size();
if (target > 0) {
last = std::min(waiting_threads.size(), static_cast<std::size_t>(target));
}
for (std::size_t index = 0; index < last; ++index) {
auto& thread = waiting_threads[index];
namespace {
ASSERT(thread->GetCondVarWaitAddress() == condition_variable_addr);
// liberate Cond Var Thread.
current_process->RemoveConditionVariableThread(thread);
const std::size_t current_core = system.CurrentCoreIndex();
auto& monitor = system.Monitor();
// Atomically read the value of the mutex.
u32 mutex_val = 0;
u32 update_val = 0;
const VAddr mutex_address = thread->GetMutexWaitAddress();
do {
// If the mutex is not yet acquired, acquire it.
mutex_val = monitor.ExclusiveRead32(current_core, mutex_address);
if (mutex_val != 0) {
update_val = mutex_val | Mutex::MutexHasWaitersFlag;
} else {
update_val = thread->GetWaitHandle();
}
} while (!monitor.ExclusiveWrite32(current_core, mutex_address, update_val));
monitor.ClearExclusive();
if (mutex_val == 0) {
// We were able to acquire the mutex, resume this thread.
auto* const lock_owner = thread->GetLockOwner();
if (lock_owner != nullptr) {
lock_owner->RemoveMutexWaiter(thread);
}
thread->SetLockOwner(nullptr);
thread->SetSynchronizationResults(nullptr, RESULT_SUCCESS);
thread->ResumeFromWait();
} else {
// The mutex is already owned by some other thread, make this thread wait on it.
const Handle owner_handle = static_cast<Handle>(mutex_val & Mutex::MutexOwnerMask);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
auto owner = handle_table.Get<Thread>(owner_handle);
ASSERT(owner);
if (thread->GetStatus() == ThreadStatus::WaitCondVar) {
thread->SetStatus(ThreadStatus::WaitMutex);
}
owner->AddMutexWaiter(thread);
}
constexpr bool IsValidSignalType(Svc::SignalType type) {
switch (type) {
case Svc::SignalType::Signal:
case Svc::SignalType::SignalAndIncrementIfEqual:
case Svc::SignalType::SignalAndModifyByWaitingCountIfEqual:
return true;
default:
return false;
}
}
static void SignalProcessWideKey32(Core::System& system, u32 condition_variable_addr, s32 target) {
SignalProcessWideKey(system, condition_variable_addr, target);
constexpr bool IsValidArbitrationType(Svc::ArbitrationType type) {
switch (type) {
case Svc::ArbitrationType::WaitIfLessThan:
case Svc::ArbitrationType::DecrementAndWaitIfLessThan:
case Svc::ArbitrationType::WaitIfEqual:
return true;
default:
return false;
}
}
} // namespace
// Wait for an address (via Address Arbiter)
static ResultCode WaitForAddress(Core::System& system, VAddr address, u32 type, s32 value,
s64 timeout) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, timeout={}", address,
type, value, timeout);
static ResultCode WaitForAddress(Core::System& system, VAddr address, Svc::ArbitrationType arb_type,
s32 value, s64 timeout_ns) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, arb_type=0x{:X}, value=0x{:X}, timeout_ns={}",
address, arb_type, value, timeout_ns);
// If the passed address is a kernel virtual address, return invalid memory state.
if (Core::Memory::IsKernelVirtualAddress(address)) {
LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
return ERR_INVALID_ADDRESS_STATE;
// Validate input.
R_UNLESS(!Memory::IsKernelAddress(address), Svc::ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(int32_t)), Svc::ResultInvalidAddress);
R_UNLESS(IsValidArbitrationType(arb_type), Svc::ResultInvalidEnumValue);
// Convert timeout from nanoseconds to ticks.
s64 timeout{};
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = timeout_ns;
}
// If the address is not properly aligned to 4 bytes, return invalid address.
if (!Common::IsWordAligned(address)) {
LOG_ERROR(Kernel_SVC, "Address is not word aligned, address={:016X}", address);
return ERR_INVALID_ADDRESS;
}
const auto arbitration_type = static_cast<AddressArbiter::ArbitrationType>(type);
auto& address_arbiter = system.Kernel().CurrentProcess()->GetAddressArbiter();
const ResultCode result =
address_arbiter.WaitForAddress(address, arbitration_type, value, timeout);
return result;
return system.Kernel().CurrentProcess()->WaitAddressArbiter(address, arb_type, value, timeout);
}
static ResultCode WaitForAddress32(Core::System& system, u32 address, u32 type, s32 value,
u32 timeout_low, u32 timeout_high) {
const auto timeout = static_cast<s64>(timeout_low | (u64{timeout_high} << 32));
return WaitForAddress(system, address, type, value, timeout);
static ResultCode WaitForAddress32(Core::System& system, u32 address, Svc::ArbitrationType arb_type,
s32 value, u32 timeout_ns_low, u32 timeout_ns_high) {
const auto timeout = static_cast<s64>(timeout_ns_low | (u64{timeout_ns_high} << 32));
return WaitForAddress(system, address, arb_type, value, timeout);
}
// Signals to an address (via Address Arbiter)
static ResultCode SignalToAddress(Core::System& system, VAddr address, u32 type, s32 value,
s32 num_to_wake) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, num_to_wake=0x{:X}",
address, type, value, num_to_wake);
static ResultCode SignalToAddress(Core::System& system, VAddr address, Svc::SignalType signal_type,
s32 value, s32 count) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, signal_type=0x{:X}, value=0x{:X}, count=0x{:X}",
address, signal_type, value, count);
// If the passed address is a kernel virtual address, return invalid memory state.
if (Core::Memory::IsKernelVirtualAddress(address)) {
LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
return ERR_INVALID_ADDRESS_STATE;
}
// Validate input.
R_UNLESS(!Memory::IsKernelAddress(address), Svc::ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(s32)), Svc::ResultInvalidAddress);
R_UNLESS(IsValidSignalType(signal_type), Svc::ResultInvalidEnumValue);
// If the address is not properly aligned to 4 bytes, return invalid address.
if (!Common::IsWordAligned(address)) {
LOG_ERROR(Kernel_SVC, "Address is not word aligned, address={:016X}", address);
return ERR_INVALID_ADDRESS;
}
const auto signal_type = static_cast<AddressArbiter::SignalType>(type);
auto& address_arbiter = system.Kernel().CurrentProcess()->GetAddressArbiter();
return address_arbiter.SignalToAddress(address, signal_type, value, num_to_wake);
return system.Kernel().CurrentProcess()->SignalAddressArbiter(address, signal_type, value,
count);
}
static ResultCode SignalToAddress32(Core::System& system, u32 address, u32 type, s32 value,
s32 num_to_wake) {
return SignalToAddress(system, address, type, value, num_to_wake);
static ResultCode SignalToAddress32(Core::System& system, u32 address, Svc::SignalType signal_type,
s32 value, s32 count) {
return SignalToAddress(system, address, signal_type, value, count);
}
static void KernelDebug([[maybe_unused]] Core::System& system,

View File

@ -0,0 +1,14 @@
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
namespace Kernel::Svc {
constexpr s32 ArgumentHandleCountMax = 0x40;
constexpr u32 HandleWaitMask{1u << 30};
} // namespace Kernel::Svc

View File

@ -0,0 +1,20 @@
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "core/hle/result.h"
namespace Kernel::Svc {
constexpr ResultCode ResultTerminationRequested{ErrorModule::Kernel, 59};
constexpr ResultCode ResultInvalidAddress{ErrorModule::Kernel, 102};
constexpr ResultCode ResultInvalidCurrentMemory{ErrorModule::Kernel, 106};
constexpr ResultCode ResultInvalidHandle{ErrorModule::Kernel, 114};
constexpr ResultCode ResultTimedOut{ErrorModule::Kernel, 117};
constexpr ResultCode ResultCancelled{ErrorModule::Kernel, 118};
constexpr ResultCode ResultInvalidEnumValue{ErrorModule::Kernel, 120};
constexpr ResultCode ResultInvalidState{ErrorModule::Kernel, 125};
} // namespace Kernel::Svc

View File

@ -65,4 +65,16 @@ struct MemoryInfo {
u32 padding{};
};
enum class SignalType : u32 {
Signal = 0,
SignalAndIncrementIfEqual = 1,
SignalAndModifyByWaitingCountIfEqual = 2,
};
enum class ArbitrationType : u32 {
WaitIfLessThan = 0,
DecrementAndWaitIfLessThan = 1,
WaitIfEqual = 2,
};
} // namespace Kernel::Svc

View File

@ -7,6 +7,7 @@
#include "common/common_types.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/result.h"
namespace Kernel {
@ -215,9 +216,10 @@ void SvcWrap64(Core::System& system) {
func(system, static_cast<u32>(Param(system, 0)), Param(system, 1), Param(system, 2)).raw);
}
template <ResultCode func(Core::System&, u32*, u64, u64, s64)>
// Used by WaitSynchronization
template <ResultCode func(Core::System&, s32*, u64, u64, s64)>
void SvcWrap64(Core::System& system) {
u32 param_1 = 0;
s32 param_1 = 0;
const u32 retval = func(system, &param_1, Param(system, 1), static_cast<u32>(Param(system, 2)),
static_cast<s64>(Param(system, 3)))
.raw;
@ -276,18 +278,22 @@ void SvcWrap64(Core::System& system) {
FuncReturn(system, retval);
}
template <ResultCode func(Core::System&, u64, u32, s32, s64)>
// Used by WaitForAddress
template <ResultCode func(Core::System&, u64, Svc::ArbitrationType, s32, s64)>
void SvcWrap64(Core::System& system) {
FuncReturn(system, func(system, Param(system, 0), static_cast<u32>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s64>(Param(system, 3)))
.raw);
FuncReturn(system,
func(system, Param(system, 0), static_cast<Svc::ArbitrationType>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s64>(Param(system, 3)))
.raw);
}
template <ResultCode func(Core::System&, u64, u32, s32, s32)>
// Used by SignalToAddress
template <ResultCode func(Core::System&, u64, Svc::SignalType, s32, s32)>
void SvcWrap64(Core::System& system) {
FuncReturn(system, func(system, Param(system, 0), static_cast<u32>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s32>(Param(system, 3)))
.raw);
FuncReturn(system,
func(system, Param(system, 0), static_cast<Svc::SignalType>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s32>(Param(system, 3)))
.raw);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -503,22 +509,23 @@ void SvcWrap32(Core::System& system) {
}
// Used by WaitForAddress32
template <ResultCode func(Core::System&, u32, u32, s32, u32, u32)>
template <ResultCode func(Core::System&, u32, Svc::ArbitrationType, s32, u32, u32)>
void SvcWrap32(Core::System& system) {
const u32 retval = func(system, static_cast<u32>(Param(system, 0)),
static_cast<u32>(Param(system, 1)), static_cast<s32>(Param(system, 2)),
static_cast<u32>(Param(system, 3)), static_cast<u32>(Param(system, 4)))
static_cast<Svc::ArbitrationType>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<u32>(Param(system, 3)),
static_cast<u32>(Param(system, 4)))
.raw;
FuncReturn(system, retval);
}
// Used by SignalToAddress32
template <ResultCode func(Core::System&, u32, u32, s32, s32)>
template <ResultCode func(Core::System&, u32, Svc::SignalType, s32, s32)>
void SvcWrap32(Core::System& system) {
const u32 retval =
func(system, static_cast<u32>(Param(system, 0)), static_cast<u32>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s32>(Param(system, 3)))
.raw;
const u32 retval = func(system, static_cast<u32>(Param(system, 0)),
static_cast<Svc::SignalType>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s32>(Param(system, 3)))
.raw;
FuncReturn(system, retval);
}
@ -539,9 +546,9 @@ void SvcWrap32(Core::System& system) {
}
// Used by WaitSynchronization32
template <ResultCode func(Core::System&, u32, u32, s32, u32, Handle*)>
template <ResultCode func(Core::System&, u32, u32, s32, u32, s32*)>
void SvcWrap32(Core::System& system) {
u32 param_1 = 0;
s32 param_1 = 0;
const u32 retval = func(system, Param32(system, 0), Param32(system, 1), Param32(system, 2),
Param32(system, 3), &param_1)
.raw;

View File

@ -1,116 +0,0 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/core.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/synchronization.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
namespace Kernel {
Synchronization::Synchronization(Core::System& system) : system{system} {}
void Synchronization::SignalObject(SynchronizationObject& obj) const {
auto& kernel = system.Kernel();
KScopedSchedulerLock lock(kernel);
if (obj.IsSignaled()) {
for (auto thread : obj.GetWaitingThreads()) {
if (thread->GetSchedulingStatus() == ThreadSchedStatus::Paused) {
if (thread->GetStatus() != ThreadStatus::WaitHLEEvent) {
ASSERT(thread->GetStatus() == ThreadStatus::WaitSynch);
ASSERT(thread->IsWaitingSync());
}
thread->SetSynchronizationResults(&obj, RESULT_SUCCESS);
thread->ResumeFromWait();
}
}
obj.ClearWaitingThreads();
}
}
std::pair<ResultCode, Handle> Synchronization::WaitFor(
std::vector<std::shared_ptr<SynchronizationObject>>& sync_objects, s64 nano_seconds) {
auto& kernel = system.Kernel();
auto* const thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle event_handle = InvalidHandle;
{
KScopedSchedulerLockAndSleep lock(kernel, event_handle, thread, nano_seconds);
const auto itr =
std::find_if(sync_objects.begin(), sync_objects.end(),
[thread](const std::shared_ptr<SynchronizationObject>& object) {
return object->IsSignaled();
});
if (itr != sync_objects.end()) {
// We found a ready object, acquire it and set the result value
SynchronizationObject* object = itr->get();
object->Acquire(thread);
const u32 index = static_cast<s32>(std::distance(sync_objects.begin(), itr));
lock.CancelSleep();
return {RESULT_SUCCESS, index};
}
if (nano_seconds == 0) {
lock.CancelSleep();
return {RESULT_TIMEOUT, InvalidHandle};
}
if (thread->IsPendingTermination()) {
lock.CancelSleep();
return {ERR_THREAD_TERMINATING, InvalidHandle};
}
if (thread->IsSyncCancelled()) {
thread->SetSyncCancelled(false);
lock.CancelSleep();
return {ERR_SYNCHRONIZATION_CANCELED, InvalidHandle};
}
for (auto& object : sync_objects) {
object->AddWaitingThread(SharedFrom(thread));
}
thread->SetSynchronizationObjects(&sync_objects);
thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT);
thread->SetStatus(ThreadStatus::WaitSynch);
thread->SetWaitingSync(true);
}
thread->SetWaitingSync(false);
if (event_handle != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(event_handle);
}
{
KScopedSchedulerLock lock(kernel);
ResultCode signaling_result = thread->GetSignalingResult();
SynchronizationObject* signaling_object = thread->GetSignalingObject();
thread->SetSynchronizationObjects(nullptr);
auto shared_thread = SharedFrom(thread);
for (auto& obj : sync_objects) {
obj->RemoveWaitingThread(shared_thread);
}
if (signaling_object != nullptr) {
const auto itr = std::find_if(
sync_objects.begin(), sync_objects.end(),
[signaling_object](const std::shared_ptr<SynchronizationObject>& object) {
return object.get() == signaling_object;
});
ASSERT(itr != sync_objects.end());
signaling_object->Acquire(thread);
const u32 index = static_cast<s32>(std::distance(sync_objects.begin(), itr));
return {signaling_result, index};
}
return {signaling_result, -1};
}
}
} // namespace Kernel

View File

@ -1,44 +0,0 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <utility>
#include <vector>
#include "core/hle/kernel/object.h"
#include "core/hle/result.h"
namespace Core {
class System;
} // namespace Core
namespace Kernel {
class SynchronizationObject;
/**
* The 'Synchronization' class is an interface for handling synchronization methods
* used by Synchronization objects and synchronization SVCs. This centralizes processing of
* such
*/
class Synchronization {
public:
explicit Synchronization(Core::System& system);
/// Signals a synchronization object, waking up all its waiting threads
void SignalObject(SynchronizationObject& obj) const;
/// Tries to see if waiting for any of the sync_objects is necessary, if not
/// it returns Success and the handle index of the signaled sync object. In
/// case not, the current thread will be locked and wait for nano_seconds or
/// for a synchronization object to signal.
std::pair<ResultCode, Handle> WaitFor(
std::vector<std::shared_ptr<SynchronizationObject>>& sync_objects, s64 nano_seconds);
private:
Core::System& system;
};
} // namespace Kernel

View File

@ -1,49 +0,0 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/synchronization.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/kernel/thread.h"
namespace Kernel {
SynchronizationObject::SynchronizationObject(KernelCore& kernel) : Object{kernel} {}
SynchronizationObject::~SynchronizationObject() = default;
void SynchronizationObject::Signal() {
kernel.Synchronization().SignalObject(*this);
}
void SynchronizationObject::AddWaitingThread(std::shared_ptr<Thread> thread) {
auto itr = std::find(waiting_threads.begin(), waiting_threads.end(), thread);
if (itr == waiting_threads.end())
waiting_threads.push_back(std::move(thread));
}
void SynchronizationObject::RemoveWaitingThread(std::shared_ptr<Thread> thread) {
auto itr = std::find(waiting_threads.begin(), waiting_threads.end(), thread);
// If a thread passed multiple handles to the same object,
// the kernel might attempt to remove the thread from the object's
// waiting threads list multiple times.
if (itr != waiting_threads.end())
waiting_threads.erase(itr);
}
void SynchronizationObject::ClearWaitingThreads() {
waiting_threads.clear();
}
const std::vector<std::shared_ptr<Thread>>& SynchronizationObject::GetWaitingThreads() const {
return waiting_threads;
}
} // namespace Kernel

View File

@ -1,77 +0,0 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <atomic>
#include <memory>
#include <vector>
#include "core/hle/kernel/object.h"
namespace Kernel {
class KernelCore;
class Synchronization;
class Thread;
/// Class that represents a Kernel object that a thread can be waiting on
class SynchronizationObject : public Object {
public:
explicit SynchronizationObject(KernelCore& kernel);
~SynchronizationObject() override;
/**
* Check if the specified thread should wait until the object is available
* @param thread The thread about which we're deciding.
* @return True if the current thread should wait due to this object being unavailable
*/
virtual bool ShouldWait(const Thread* thread) const = 0;
/// Acquire/lock the object for the specified thread if it is available
virtual void Acquire(Thread* thread) = 0;
/// Signal this object
virtual void Signal();
virtual bool IsSignaled() const {
return is_signaled;
}
/**
* Add a thread to wait on this object
* @param thread Pointer to thread to add
*/
void AddWaitingThread(std::shared_ptr<Thread> thread);
/**
* Removes a thread from waiting on this object (e.g. if it was resumed already)
* @param thread Pointer to thread to remove
*/
void RemoveWaitingThread(std::shared_ptr<Thread> thread);
/// Get a const reference to the waiting threads list for debug use
const std::vector<std::shared_ptr<Thread>>& GetWaitingThreads() const;
void ClearWaitingThreads();
protected:
std::atomic_bool is_signaled{}; // Tells if this sync object is signaled
private:
/// Threads waiting for this object to become available
std::vector<std::shared_ptr<Thread>> waiting_threads;
};
// Specialization of DynamicObjectCast for SynchronizationObjects
template <>
inline std::shared_ptr<SynchronizationObject> DynamicObjectCast<SynchronizationObject>(
std::shared_ptr<Object> object) {
if (object != nullptr && object->IsWaitable()) {
return std::static_pointer_cast<SynchronizationObject>(object);
}
return nullptr;
}
} // namespace Kernel

View File

@ -17,9 +17,11 @@
#include "core/hardware_properties.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/memory/memory_layout.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/thread.h"
@ -34,26 +36,19 @@
namespace Kernel {
bool Thread::ShouldWait(const Thread* thread) const {
return status != ThreadStatus::Dead;
}
bool Thread::IsSignaled() const {
return status == ThreadStatus::Dead;
return signaled;
}
void Thread::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
}
Thread::Thread(KernelCore& kernel) : SynchronizationObject{kernel} {}
Thread::Thread(KernelCore& kernel) : KSynchronizationObject{kernel} {}
Thread::~Thread() = default;
void Thread::Stop() {
{
KScopedSchedulerLock lock(kernel);
SetStatus(ThreadStatus::Dead);
Signal();
SetState(ThreadState::Terminated);
signaled = true;
NotifyAvailable();
kernel.GlobalHandleTable().Close(global_handle);
if (owner_process) {
@ -67,59 +62,27 @@ void Thread::Stop() {
global_handle = 0;
}
void Thread::ResumeFromWait() {
void Thread::Wakeup() {
KScopedSchedulerLock lock(kernel);
switch (status) {
case ThreadStatus::Paused:
case ThreadStatus::WaitSynch:
case ThreadStatus::WaitHLEEvent:
case ThreadStatus::WaitSleep:
case ThreadStatus::WaitIPC:
case ThreadStatus::WaitMutex:
case ThreadStatus::WaitCondVar:
case ThreadStatus::WaitArb:
case ThreadStatus::Dormant:
break;
case ThreadStatus::Ready:
// The thread's wakeup callback must have already been cleared when the thread was first
// awoken.
ASSERT(hle_callback == nullptr);
// If the thread is waiting on multiple wait objects, it might be awoken more than once
// before actually resuming. We can ignore subsequent wakeups if the thread status has
// already been set to ThreadStatus::Ready.
return;
case ThreadStatus::Dead:
// This should never happen, as threads must complete before being stopped.
DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.",
GetObjectId());
return;
}
SetStatus(ThreadStatus::Ready);
}
void Thread::OnWakeUp() {
KScopedSchedulerLock lock(kernel);
SetStatus(ThreadStatus::Ready);
SetState(ThreadState::Runnable);
}
ResultCode Thread::Start() {
KScopedSchedulerLock lock(kernel);
SetStatus(ThreadStatus::Ready);
SetState(ThreadState::Runnable);
return RESULT_SUCCESS;
}
void Thread::CancelWait() {
KScopedSchedulerLock lock(kernel);
if (GetSchedulingStatus() != ThreadSchedStatus::Paused || !is_waiting_on_sync) {
if (GetState() != ThreadState::Waiting || !is_cancellable) {
is_sync_cancelled = true;
return;
}
// TODO(Blinkhawk): Implement cancel of server session
is_sync_cancelled = false;
SetSynchronizationResults(nullptr, ERR_SYNCHRONIZATION_CANCELED);
SetStatus(ThreadStatus::Ready);
SetState(ThreadState::Runnable);
}
static void ResetThreadContext32(Core::ARM_Interface::ThreadContext32& context, u32 stack_top,
@ -183,25 +146,24 @@ ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadTy
std::shared_ptr<Thread> thread = std::make_shared<Thread>(kernel);
thread->thread_id = kernel.CreateNewThreadID();
thread->status = ThreadStatus::Dormant;
thread->thread_state = ThreadState::Initialized;
thread->entry_point = entry_point;
thread->stack_top = stack_top;
thread->disable_count = 1;
thread->tpidr_el0 = 0;
thread->nominal_priority = thread->current_priority = priority;
thread->current_priority = priority;
thread->base_priority = priority;
thread->lock_owner = nullptr;
thread->schedule_count = -1;
thread->last_scheduled_tick = 0;
thread->processor_id = processor_id;
thread->ideal_core = processor_id;
thread->affinity_mask.SetAffinity(processor_id, true);
thread->wait_objects = nullptr;
thread->mutex_wait_address = 0;
thread->condvar_wait_address = 0;
thread->wait_handle = 0;
thread->name = std::move(name);
thread->global_handle = kernel.GlobalHandleTable().Create(thread).Unwrap();
thread->owner_process = owner_process;
thread->type = type_flags;
thread->signaled = false;
if ((type_flags & THREADTYPE_IDLE) == 0) {
auto& scheduler = kernel.GlobalSchedulerContext();
scheduler.AddThread(thread);
@ -226,153 +188,185 @@ ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadTy
return MakeResult<std::shared_ptr<Thread>>(std::move(thread));
}
void Thread::SetPriority(u32 priority) {
KScopedSchedulerLock lock(kernel);
void Thread::SetBasePriority(u32 priority) {
ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST,
"Invalid priority value.");
nominal_priority = priority;
UpdatePriority();
KScopedSchedulerLock lock(kernel);
// Change our base priority.
base_priority = priority;
// Perform a priority restoration.
RestorePriority(kernel, this);
}
void Thread::SetSynchronizationResults(SynchronizationObject* object, ResultCode result) {
void Thread::SetSynchronizationResults(KSynchronizationObject* object, ResultCode result) {
signaling_object = object;
signaling_result = result;
}
s32 Thread::GetSynchronizationObjectIndex(std::shared_ptr<SynchronizationObject> object) const {
ASSERT_MSG(!wait_objects->empty(), "Thread is not waiting for anything");
const auto match = std::find(wait_objects->rbegin(), wait_objects->rend(), object);
return static_cast<s32>(std::distance(match, wait_objects->rend()) - 1);
}
VAddr Thread::GetCommandBufferAddress() const {
// Offset from the start of TLS at which the IPC command buffer begins.
constexpr u64 command_header_offset = 0x80;
return GetTLSAddress() + command_header_offset;
}
void Thread::SetStatus(ThreadStatus new_status) {
if (new_status == status) {
return;
}
void Thread::SetState(ThreadState state) {
KScopedSchedulerLock sl(kernel);
switch (new_status) {
case ThreadStatus::Ready:
SetSchedulingStatus(ThreadSchedStatus::Runnable);
break;
case ThreadStatus::Dormant:
SetSchedulingStatus(ThreadSchedStatus::None);
break;
case ThreadStatus::Dead:
SetSchedulingStatus(ThreadSchedStatus::Exited);
break;
default:
SetSchedulingStatus(ThreadSchedStatus::Paused);
break;
}
// Clear debugging state
SetMutexWaitAddressForDebugging({});
SetWaitReasonForDebugging({});
status = new_status;
const ThreadState old_state = thread_state;
thread_state =
static_cast<ThreadState>((old_state & ~ThreadState::Mask) | (state & ThreadState::Mask));
if (thread_state != old_state) {
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
}
void Thread::AddMutexWaiter(std::shared_ptr<Thread> thread) {
if (thread->lock_owner.get() == this) {
// If the thread is already waiting for this thread to release the mutex, ensure that the
// waiters list is consistent and return without doing anything.
const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(iter != wait_mutex_threads.end());
return;
void Thread::AddWaiterImpl(Thread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Find the right spot to insert the waiter.
auto it = waiter_list.begin();
while (it != waiter_list.end()) {
if (it->GetPriority() > thread->GetPriority()) {
break;
}
it++;
}
// A thread can't wait on two different mutexes at the same time.
ASSERT(thread->lock_owner == nullptr);
// Keep track of how many kernel waiters we have.
if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters++) >= 0);
}
// Ensure that the thread is not already in the list of mutex waiters
const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(iter == wait_mutex_threads.end());
// Keep the list in an ordered fashion
const auto insertion_point = std::find_if(
wait_mutex_threads.begin(), wait_mutex_threads.end(),
[&thread](const auto& entry) { return entry->GetPriority() > thread->GetPriority(); });
wait_mutex_threads.insert(insertion_point, thread);
thread->lock_owner = SharedFrom(this);
UpdatePriority();
// Insert the waiter.
waiter_list.insert(it, *thread);
thread->SetLockOwner(this);
}
void Thread::RemoveMutexWaiter(std::shared_ptr<Thread> thread) {
ASSERT(thread->lock_owner.get() == this);
void Thread::RemoveWaiterImpl(Thread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Ensure that the thread is in the list of mutex waiters
const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(iter != wait_mutex_threads.end());
// Keep track of how many kernel waiters we have.
if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters--) > 0);
}
wait_mutex_threads.erase(iter);
thread->lock_owner = nullptr;
UpdatePriority();
// Remove the waiter.
waiter_list.erase(waiter_list.iterator_to(*thread));
thread->SetLockOwner(nullptr);
}
void Thread::UpdatePriority() {
// If any of the threads waiting on the mutex have a higher priority
// (taking into account priority inheritance), then this thread inherits
// that thread's priority.
u32 new_priority = nominal_priority;
if (!wait_mutex_threads.empty()) {
if (wait_mutex_threads.front()->current_priority < new_priority) {
new_priority = wait_mutex_threads.front()->current_priority;
void Thread::RestorePriority(KernelCore& kernel, Thread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
while (true) {
// We want to inherit priority where possible.
s32 new_priority = thread->GetBasePriority();
if (thread->HasWaiters()) {
new_priority = std::min(new_priority, thread->waiter_list.front().GetPriority());
}
// If the priority we would inherit is not different from ours, don't do anything.
if (new_priority == thread->GetPriority()) {
return;
}
// Ensure we don't violate condition variable red black tree invariants.
if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
BeforeUpdatePriority(kernel, cv_tree, thread);
}
// Change the priority.
const s32 old_priority = thread->GetPriority();
thread->SetPriority(new_priority);
// Restore the condition variable, if relevant.
if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
AfterUpdatePriority(kernel, cv_tree, thread);
}
// Update the scheduler.
KScheduler::OnThreadPriorityChanged(kernel, thread, old_priority);
// Keep the lock owner up to date.
Thread* lock_owner = thread->GetLockOwner();
if (lock_owner == nullptr) {
return;
}
// Update the thread in the lock owner's sorted list, and continue inheriting.
lock_owner->RemoveWaiterImpl(thread);
lock_owner->AddWaiterImpl(thread);
thread = lock_owner;
}
}
void Thread::AddWaiter(Thread* thread) {
AddWaiterImpl(thread);
RestorePriority(kernel, this);
}
void Thread::RemoveWaiter(Thread* thread) {
RemoveWaiterImpl(thread);
RestorePriority(kernel, this);
}
Thread* Thread::RemoveWaiterByKey(s32* out_num_waiters, VAddr key) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
s32 num_waiters{};
Thread* next_lock_owner{};
auto it = waiter_list.begin();
while (it != waiter_list.end()) {
if (it->GetAddressKey() == key) {
Thread* thread = std::addressof(*it);
// Keep track of how many kernel waiters we have.
if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters--) > 0);
}
it = waiter_list.erase(it);
// Update the next lock owner.
if (next_lock_owner == nullptr) {
next_lock_owner = thread;
next_lock_owner->SetLockOwner(nullptr);
} else {
next_lock_owner->AddWaiterImpl(thread);
}
num_waiters++;
} else {
it++;
}
}
if (new_priority == current_priority) {
return;
// Do priority updates, if we have a next owner.
if (next_lock_owner) {
RestorePriority(kernel, this);
RestorePriority(kernel, next_lock_owner);
}
if (GetStatus() == ThreadStatus::WaitCondVar) {
owner_process->RemoveConditionVariableThread(SharedFrom(this));
}
SetCurrentPriority(new_priority);
if (GetStatus() == ThreadStatus::WaitCondVar) {
owner_process->InsertConditionVariableThread(SharedFrom(this));
}
if (!lock_owner) {
return;
}
// Ensure that the thread is within the correct location in the waiting list.
auto old_owner = lock_owner;
lock_owner->RemoveMutexWaiter(SharedFrom(this));
old_owner->AddMutexWaiter(SharedFrom(this));
// Recursively update the priority of the thread that depends on the priority of this one.
lock_owner->UpdatePriority();
}
bool Thread::AllSynchronizationObjectsReady() const {
return std::none_of(wait_objects->begin(), wait_objects->end(),
[this](const std::shared_ptr<SynchronizationObject>& object) {
return object->ShouldWait(this);
});
}
bool Thread::InvokeHLECallback(std::shared_ptr<Thread> thread) {
ASSERT(hle_callback);
return hle_callback(std::move(thread));
// Return output.
*out_num_waiters = num_waiters;
return next_lock_owner;
}
ResultCode Thread::SetActivity(ThreadActivity value) {
KScopedSchedulerLock lock(kernel);
auto sched_status = GetSchedulingStatus();
auto sched_status = GetState();
if (sched_status != ThreadSchedStatus::Runnable && sched_status != ThreadSchedStatus::Paused) {
if (sched_status != ThreadState::Runnable && sched_status != ThreadState::Waiting) {
return ERR_INVALID_STATE;
}
if (IsPendingTermination()) {
if (IsTerminationRequested()) {
return RESULT_SUCCESS;
}
@ -394,7 +388,8 @@ ResultCode Thread::Sleep(s64 nanoseconds) {
Handle event_handle{};
{
KScopedSchedulerLockAndSleep lock(kernel, event_handle, this, nanoseconds);
SetStatus(ThreadStatus::WaitSleep);
SetState(ThreadState::Waiting);
SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Sleep);
}
if (event_handle != InvalidHandle) {
@ -405,34 +400,21 @@ ResultCode Thread::Sleep(s64 nanoseconds) {
}
void Thread::AddSchedulingFlag(ThreadSchedFlags flag) {
const u32 old_state = scheduling_state;
const auto old_state = GetRawState();
pausing_state |= static_cast<u32>(flag);
const u32 base_scheduling = static_cast<u32>(GetSchedulingStatus());
scheduling_state = base_scheduling | pausing_state;
const auto base_scheduling = GetState();
thread_state = base_scheduling | static_cast<ThreadState>(pausing_state);
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
void Thread::RemoveSchedulingFlag(ThreadSchedFlags flag) {
const u32 old_state = scheduling_state;
const auto old_state = GetRawState();
pausing_state &= ~static_cast<u32>(flag);
const u32 base_scheduling = static_cast<u32>(GetSchedulingStatus());
scheduling_state = base_scheduling | pausing_state;
const auto base_scheduling = GetState();
thread_state = base_scheduling | static_cast<ThreadState>(pausing_state);
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
void Thread::SetSchedulingStatus(ThreadSchedStatus new_status) {
const u32 old_state = scheduling_state;
scheduling_state = (scheduling_state & static_cast<u32>(ThreadSchedMasks::HighMask)) |
static_cast<u32>(new_status);
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
void Thread::SetCurrentPriority(u32 new_priority) {
const u32 old_priority = std::exchange(current_priority, new_priority);
KScheduler::OnThreadPriorityChanged(kernel, this, kernel.CurrentScheduler()->GetCurrentThread(),
old_priority);
}
ResultCode Thread::SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask) {
KScopedSchedulerLock lock(kernel);
const auto HighestSetCore = [](u64 mask, u32 max_cores) {

View File

@ -6,16 +6,21 @@
#include <array>
#include <functional>
#include <span>
#include <string>
#include <utility>
#include <vector>
#include <boost/intrusive/list.hpp>
#include "common/common_types.h"
#include "common/intrusive_red_black_tree.h"
#include "common/spin_lock.h"
#include "core/arm/arm_interface.h"
#include "core/hle/kernel/k_affinity_mask.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/kernel/svc_common.h"
#include "core/hle/result.h"
namespace Common {
@ -73,19 +78,24 @@ enum ThreadProcessorId : s32 {
(1 << THREADPROCESSORID_2) | (1 << THREADPROCESSORID_3)
};
enum class ThreadStatus {
Ready, ///< Ready to run
Paused, ///< Paused by SetThreadActivity or debug
WaitHLEEvent, ///< Waiting for hle event to finish
WaitSleep, ///< Waiting due to a SleepThread SVC
WaitIPC, ///< Waiting for the reply from an IPC request
WaitSynch, ///< Waiting due to WaitSynchronization
WaitMutex, ///< Waiting due to an ArbitrateLock svc
WaitCondVar, ///< Waiting due to an WaitProcessWideKey svc
WaitArb, ///< Waiting due to a SignalToAddress/WaitForAddress svc
Dormant, ///< Created but not yet made ready
Dead ///< Run to completion, or forcefully terminated
enum class ThreadState : u16 {
Initialized = 0,
Waiting = 1,
Runnable = 2,
Terminated = 3,
SuspendShift = 4,
Mask = (1 << SuspendShift) - 1,
ProcessSuspended = (1 << (0 + SuspendShift)),
ThreadSuspended = (1 << (1 + SuspendShift)),
DebugSuspended = (1 << (2 + SuspendShift)),
BacktraceSuspended = (1 << (3 + SuspendShift)),
InitSuspended = (1 << (4 + SuspendShift)),
SuspendFlagMask = ((1 << 5) - 1) << SuspendShift,
};
DECLARE_ENUM_FLAG_OPERATORS(ThreadState);
enum class ThreadWakeupReason {
Signal, // The thread was woken up by WakeupAllWaitingThreads due to an object signal.
@ -97,13 +107,6 @@ enum class ThreadActivity : u32 {
Paused = 1,
};
enum class ThreadSchedStatus : u32 {
None = 0,
Paused = 1,
Runnable = 2,
Exited = 3,
};
enum class ThreadSchedFlags : u32 {
ProcessPauseFlag = 1 << 4,
ThreadPauseFlag = 1 << 5,
@ -111,13 +114,20 @@ enum class ThreadSchedFlags : u32 {
KernelInitPauseFlag = 1 << 8,
};
enum class ThreadSchedMasks : u32 {
LowMask = 0x000f,
HighMask = 0xfff0,
ForcePauseMask = 0x0070,
enum class ThreadWaitReasonForDebugging : u32 {
None, ///< Thread is not waiting
Sleep, ///< Thread is waiting due to a SleepThread SVC
IPC, ///< Thread is waiting for the reply from an IPC request
Synchronization, ///< Thread is waiting due to a WaitSynchronization SVC
ConditionVar, ///< Thread is waiting due to a WaitProcessWideKey SVC
Arbitration, ///< Thread is waiting due to a SignalToAddress/WaitForAddress SVC
Suspended, ///< Thread is waiting due to process suspension
};
class Thread final : public SynchronizationObject {
class Thread final : public KSynchronizationObject, public boost::intrusive::list_base_hook<> {
friend class KScheduler;
friend class Process;
public:
explicit Thread(KernelCore& kernel);
~Thread() override;
@ -127,10 +137,6 @@ public:
using ThreadContext32 = Core::ARM_Interface::ThreadContext32;
using ThreadContext64 = Core::ARM_Interface::ThreadContext64;
using ThreadSynchronizationObjects = std::vector<std::shared_ptr<SynchronizationObject>>;
using HLECallback = std::function<bool(std::shared_ptr<Thread> thread)>;
/**
* Creates and returns a new thread. The new thread is immediately scheduled
* @param system The instance of the whole system
@ -186,59 +192,54 @@ public:
return HANDLE_TYPE;
}
bool ShouldWait(const Thread* thread) const override;
void Acquire(Thread* thread) override;
bool IsSignaled() const override;
/**
* Gets the thread's current priority
* @return The current thread's priority
*/
u32 GetPriority() const {
[[nodiscard]] s32 GetPriority() const {
return current_priority;
}
/**
* Sets the thread's current priority.
* @param priority The new priority.
*/
void SetPriority(s32 priority) {
current_priority = priority;
}
/**
* Gets the thread's nominal priority.
* @return The current thread's nominal priority.
*/
u32 GetNominalPriority() const {
return nominal_priority;
[[nodiscard]] s32 GetBasePriority() const {
return base_priority;
}
/**
* Sets the thread's current priority
* @param priority The new priority
* Sets the thread's nominal priority.
* @param priority The new priority.
*/
void SetPriority(u32 priority);
/// Adds a thread to the list of threads that are waiting for a lock held by this thread.
void AddMutexWaiter(std::shared_ptr<Thread> thread);
/// Removes a thread from the list of threads that are waiting for a lock held by this thread.
void RemoveMutexWaiter(std::shared_ptr<Thread> thread);
/// Recalculates the current priority taking into account priority inheritance.
void UpdatePriority();
void SetBasePriority(u32 priority);
/// Changes the core that the thread is running or scheduled to run on.
ResultCode SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask);
[[nodiscard]] ResultCode SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask);
/**
* Gets the thread's thread ID
* @return The thread's ID
*/
u64 GetThreadID() const {
[[nodiscard]] u64 GetThreadID() const {
return thread_id;
}
/// Resumes a thread from waiting
void ResumeFromWait();
void OnWakeUp();
void Wakeup();
ResultCode Start();
virtual bool IsSignaled() const override;
/// Cancels a waiting operation that this thread may or may not be within.
///
/// When the thread is within a waiting state, this will set the thread's
@ -247,30 +248,21 @@ public:
///
void CancelWait();
void SetSynchronizationResults(SynchronizationObject* object, ResultCode result);
void SetSynchronizationResults(KSynchronizationObject* object, ResultCode result);
SynchronizationObject* GetSignalingObject() const {
return signaling_object;
void SetSyncedObject(KSynchronizationObject* object, ResultCode result) {
SetSynchronizationResults(object, result);
}
ResultCode GetWaitResult(KSynchronizationObject** out) const {
*out = signaling_object;
return signaling_result;
}
ResultCode GetSignalingResult() const {
return signaling_result;
}
/**
* Retrieves the index that this particular object occupies in the list of objects
* that the thread passed to WaitSynchronization, starting the search from the last element.
*
* It is used to set the output index of WaitSynchronization when the thread is awakened.
*
* When a thread wakes up due to an object signal, the kernel will use the index of the last
* matching object in the wait objects list in case of having multiple instances of the same
* object in the list.
*
* @param object Object to query the index of.
*/
s32 GetSynchronizationObjectIndex(std::shared_ptr<SynchronizationObject> object) const;
/**
* Stops a thread, invalidating it from further use
*/
@ -341,18 +333,22 @@ public:
std::shared_ptr<Common::Fiber>& GetHostContext();
ThreadStatus GetStatus() const {
return status;
ThreadState GetState() const {
return thread_state & ThreadState::Mask;
}
void SetStatus(ThreadStatus new_status);
ThreadState GetRawState() const {
return thread_state;
}
void SetState(ThreadState state);
s64 GetLastScheduledTick() const {
return this->last_scheduled_tick;
return last_scheduled_tick;
}
void SetLastScheduledTick(s64 tick) {
this->last_scheduled_tick = tick;
last_scheduled_tick = tick;
}
u64 GetTotalCPUTimeTicks() const {
@ -387,98 +383,18 @@ public:
return owner_process;
}
const ThreadSynchronizationObjects& GetSynchronizationObjects() const {
return *wait_objects;
}
void SetSynchronizationObjects(ThreadSynchronizationObjects* objects) {
wait_objects = objects;
}
void ClearSynchronizationObjects() {
for (const auto& waiting_object : *wait_objects) {
waiting_object->RemoveWaitingThread(SharedFrom(this));
}
wait_objects->clear();
}
/// Determines whether all the objects this thread is waiting on are ready.
bool AllSynchronizationObjectsReady() const;
const MutexWaitingThreads& GetMutexWaitingThreads() const {
return wait_mutex_threads;
}
Thread* GetLockOwner() const {
return lock_owner.get();
return lock_owner;
}
void SetLockOwner(std::shared_ptr<Thread> owner) {
lock_owner = std::move(owner);
void SetLockOwner(Thread* owner) {
lock_owner = owner;
}
VAddr GetCondVarWaitAddress() const {
return condvar_wait_address;
}
void SetCondVarWaitAddress(VAddr address) {
condvar_wait_address = address;
}
VAddr GetMutexWaitAddress() const {
return mutex_wait_address;
}
void SetMutexWaitAddress(VAddr address) {
mutex_wait_address = address;
}
Handle GetWaitHandle() const {
return wait_handle;
}
void SetWaitHandle(Handle handle) {
wait_handle = handle;
}
VAddr GetArbiterWaitAddress() const {
return arb_wait_address;
}
void SetArbiterWaitAddress(VAddr address) {
arb_wait_address = address;
}
bool HasHLECallback() const {
return hle_callback != nullptr;
}
void SetHLECallback(HLECallback callback) {
hle_callback = std::move(callback);
}
void SetHLETimeEvent(Handle time_event) {
hle_time_event = time_event;
}
void SetHLESyncObject(SynchronizationObject* object) {
hle_object = object;
}
Handle GetHLETimeEvent() const {
return hle_time_event;
}
SynchronizationObject* GetHLESyncObject() const {
return hle_object;
}
void InvalidateHLECallback() {
SetHLECallback(nullptr);
}
bool InvokeHLECallback(std::shared_ptr<Thread> thread);
u32 GetIdealCore() const {
return ideal_core;
}
@ -493,20 +409,11 @@ public:
ResultCode Sleep(s64 nanoseconds);
s64 GetYieldScheduleCount() const {
return this->schedule_count;
return schedule_count;
}
void SetYieldScheduleCount(s64 count) {
this->schedule_count = count;
}
ThreadSchedStatus GetSchedulingStatus() const {
return static_cast<ThreadSchedStatus>(scheduling_state &
static_cast<u32>(ThreadSchedMasks::LowMask));
}
bool IsRunnable() const {
return scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable);
schedule_count = count;
}
bool IsRunning() const {
@ -517,36 +424,32 @@ public:
is_running = value;
}
bool IsSyncCancelled() const {
bool IsWaitCancelled() const {
return is_sync_cancelled;
}
void SetSyncCancelled(bool value) {
is_sync_cancelled = value;
void ClearWaitCancelled() {
is_sync_cancelled = false;
}
Handle GetGlobalHandle() const {
return global_handle;
}
bool IsWaitingForArbitration() const {
return waiting_for_arbitration;
bool IsCancellable() const {
return is_cancellable;
}
void WaitForArbitration(bool set) {
waiting_for_arbitration = set;
void SetCancellable() {
is_cancellable = true;
}
bool IsWaitingSync() const {
return is_waiting_on_sync;
void ClearCancellable() {
is_cancellable = false;
}
void SetWaitingSync(bool is_waiting) {
is_waiting_on_sync = is_waiting;
}
bool IsPendingTermination() const {
return will_be_terminated || GetSchedulingStatus() == ThreadSchedStatus::Exited;
bool IsTerminationRequested() const {
return will_be_terminated || GetRawState() == ThreadState::Terminated;
}
bool IsPaused() const {
@ -578,21 +481,21 @@ public:
constexpr QueueEntry() = default;
constexpr void Initialize() {
this->prev = nullptr;
this->next = nullptr;
prev = nullptr;
next = nullptr;
}
constexpr Thread* GetPrev() const {
return this->prev;
return prev;
}
constexpr Thread* GetNext() const {
return this->next;
return next;
}
constexpr void SetPrev(Thread* thread) {
this->prev = thread;
prev = thread;
}
constexpr void SetNext(Thread* thread) {
this->next = thread;
next = thread;
}
private:
@ -601,11 +504,11 @@ public:
};
QueueEntry& GetPriorityQueueEntry(s32 core) {
return this->per_core_priority_queue_entry[core];
return per_core_priority_queue_entry[core];
}
const QueueEntry& GetPriorityQueueEntry(s32 core) const {
return this->per_core_priority_queue_entry[core];
return per_core_priority_queue_entry[core];
}
s32 GetDisableDispatchCount() const {
@ -622,24 +525,170 @@ public:
disable_count--;
}
private:
friend class GlobalSchedulerContext;
friend class KScheduler;
friend class Process;
void SetWaitReasonForDebugging(ThreadWaitReasonForDebugging reason) {
wait_reason_for_debugging = reason;
}
void SetSchedulingStatus(ThreadSchedStatus new_status);
[[nodiscard]] ThreadWaitReasonForDebugging GetWaitReasonForDebugging() const {
return wait_reason_for_debugging;
}
void SetWaitObjectsForDebugging(const std::span<KSynchronizationObject*>& objects) {
wait_objects_for_debugging.clear();
wait_objects_for_debugging.reserve(objects.size());
for (const auto& object : objects) {
wait_objects_for_debugging.emplace_back(object);
}
}
[[nodiscard]] const std::vector<KSynchronizationObject*>& GetWaitObjectsForDebugging() const {
return wait_objects_for_debugging;
}
void SetMutexWaitAddressForDebugging(VAddr address) {
mutex_wait_address_for_debugging = address;
}
[[nodiscard]] VAddr GetMutexWaitAddressForDebugging() const {
return mutex_wait_address_for_debugging;
}
void AddWaiter(Thread* thread);
void RemoveWaiter(Thread* thread);
[[nodiscard]] Thread* RemoveWaiterByKey(s32* out_num_waiters, VAddr key);
[[nodiscard]] VAddr GetAddressKey() const {
return address_key;
}
[[nodiscard]] u32 GetAddressKeyValue() const {
return address_key_value;
}
void SetAddressKey(VAddr key) {
address_key = key;
}
void SetAddressKey(VAddr key, u32 val) {
address_key = key;
address_key_value = val;
}
private:
static constexpr size_t PriorityInheritanceCountMax = 10;
union SyncObjectBuffer {
std::array<KSynchronizationObject*, Svc::ArgumentHandleCountMax> sync_objects{};
std::array<Handle,
Svc::ArgumentHandleCountMax*(sizeof(KSynchronizationObject*) / sizeof(Handle))>
handles;
constexpr SyncObjectBuffer() {}
};
static_assert(sizeof(SyncObjectBuffer::sync_objects) == sizeof(SyncObjectBuffer::handles));
struct ConditionVariableComparator {
struct LightCompareType {
u64 cv_key{};
s32 priority{};
[[nodiscard]] constexpr u64 GetConditionVariableKey() const {
return cv_key;
}
[[nodiscard]] constexpr s32 GetPriority() const {
return priority;
}
};
template <typename T>
requires(
std::same_as<T, Thread> ||
std::same_as<T, LightCompareType>) static constexpr int Compare(const T& lhs,
const Thread& rhs) {
const uintptr_t l_key = lhs.GetConditionVariableKey();
const uintptr_t r_key = rhs.GetConditionVariableKey();
if (l_key < r_key) {
// Sort first by key
return -1;
} else if (l_key == r_key && lhs.GetPriority() < rhs.GetPriority()) {
// And then by priority.
return -1;
} else {
return 1;
}
}
};
Common::IntrusiveRedBlackTreeNode condvar_arbiter_tree_node{};
using ConditionVariableThreadTreeTraits =
Common::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<&Thread::condvar_arbiter_tree_node>;
using ConditionVariableThreadTree =
ConditionVariableThreadTreeTraits::TreeType<ConditionVariableComparator>;
public:
using ConditionVariableThreadTreeType = ConditionVariableThreadTree;
[[nodiscard]] uintptr_t GetConditionVariableKey() const {
return condvar_key;
}
[[nodiscard]] uintptr_t GetAddressArbiterKey() const {
return condvar_key;
}
void SetConditionVariable(ConditionVariableThreadTree* tree, VAddr address, uintptr_t cv_key,
u32 value) {
condvar_tree = tree;
condvar_key = cv_key;
address_key = address;
address_key_value = value;
}
void ClearConditionVariable() {
condvar_tree = nullptr;
}
[[nodiscard]] bool IsWaitingForConditionVariable() const {
return condvar_tree != nullptr;
}
void SetAddressArbiter(ConditionVariableThreadTree* tree, uintptr_t address) {
condvar_tree = tree;
condvar_key = address;
}
void ClearAddressArbiter() {
condvar_tree = nullptr;
}
[[nodiscard]] bool IsWaitingForAddressArbiter() const {
return condvar_tree != nullptr;
}
[[nodiscard]] ConditionVariableThreadTree* GetConditionVariableTree() const {
return condvar_tree;
}
[[nodiscard]] bool HasWaiters() const {
return !waiter_list.empty();
}
private:
void AddSchedulingFlag(ThreadSchedFlags flag);
void RemoveSchedulingFlag(ThreadSchedFlags flag);
void SetCurrentPriority(u32 new_priority);
void AddWaiterImpl(Thread* thread);
void RemoveWaiterImpl(Thread* thread);
static void RestorePriority(KernelCore& kernel, Thread* thread);
Common::SpinLock context_guard{};
ThreadContext32 context_32{};
ThreadContext64 context_64{};
std::shared_ptr<Common::Fiber> host_context{};
ThreadStatus status = ThreadStatus::Dormant;
u32 scheduling_state = 0;
ThreadState thread_state = ThreadState::Initialized;
u64 thread_id = 0;
@ -652,11 +701,11 @@ private:
/// Nominal thread priority, as set by the emulated application.
/// The nominal priority is the thread priority without priority
/// inheritance taken into account.
u32 nominal_priority = 0;
s32 base_priority{};
/// Current thread priority. This may change over the course of the
/// thread's lifetime in order to facilitate priority inheritance.
u32 current_priority = 0;
s32 current_priority{};
u64 total_cpu_time_ticks = 0; ///< Total CPU running ticks.
s64 schedule_count{};
@ -671,37 +720,27 @@ private:
Process* owner_process;
/// Objects that the thread is waiting on, in the same order as they were
/// passed to WaitSynchronization.
ThreadSynchronizationObjects* wait_objects;
/// passed to WaitSynchronization. This is used for debugging only.
std::vector<KSynchronizationObject*> wait_objects_for_debugging;
SynchronizationObject* signaling_object;
/// The current mutex wait address. This is used for debugging only.
VAddr mutex_wait_address_for_debugging{};
/// The reason the thread is waiting. This is used for debugging only.
ThreadWaitReasonForDebugging wait_reason_for_debugging{};
KSynchronizationObject* signaling_object;
ResultCode signaling_result{RESULT_SUCCESS};
/// List of threads that are waiting for a mutex that is held by this thread.
MutexWaitingThreads wait_mutex_threads;
/// Thread that owns the lock that this thread is waiting for.
std::shared_ptr<Thread> lock_owner;
/// If waiting on a ConditionVariable, this is the ConditionVariable address
VAddr condvar_wait_address = 0;
/// If waiting on a Mutex, this is the mutex address
VAddr mutex_wait_address = 0;
/// The handle used to wait for the mutex.
Handle wait_handle = 0;
/// If waiting for an AddressArbiter, this is the address being waited on.
VAddr arb_wait_address{0};
bool waiting_for_arbitration{};
Thread* lock_owner{};
/// Handle used as userdata to reference this object when inserting into the CoreTiming queue.
Handle global_handle = 0;
/// Callback for HLE Events
HLECallback hle_callback;
Handle hle_time_event;
SynchronizationObject* hle_object;
KScheduler* scheduler = nullptr;
std::array<QueueEntry, Core::Hardware::NUM_CPU_CORES> per_core_priority_queue_entry{};
@ -714,7 +753,7 @@ private:
u32 pausing_state = 0;
bool is_running = false;
bool is_waiting_on_sync = false;
bool is_cancellable = false;
bool is_sync_cancelled = false;
bool is_continuous_on_svc = false;
@ -725,6 +764,18 @@ private:
bool was_running = false;
bool signaled{};
ConditionVariableThreadTree* condvar_tree{};
uintptr_t condvar_key{};
VAddr address_key{};
u32 address_key_value{};
s32 num_kernel_waiters{};
using WaiterList = boost::intrusive::list<Thread>;
WaiterList waiter_list{};
WaiterList pinned_waiter_list{};
std::string name;
};

View File

@ -18,12 +18,10 @@ TimeManager::TimeManager(Core::System& system_) : system{system_} {
time_manager_event_type = Core::Timing::CreateEvent(
"Kernel::TimeManagerCallback",
[this](std::uintptr_t thread_handle, std::chrono::nanoseconds) {
const KScopedSchedulerLock lock(system.Kernel());
const auto proper_handle = static_cast<Handle>(thread_handle);
std::shared_ptr<Thread> thread;
{
std::lock_guard lock{mutex};
const auto proper_handle = static_cast<Handle>(thread_handle);
if (cancelled_events[proper_handle]) {
return;
}
@ -32,7 +30,7 @@ TimeManager::TimeManager(Core::System& system_) : system{system_} {
if (thread) {
// Thread can be null if process has exited
thread->OnWakeUp();
thread->Wakeup();
}
});
}
@ -42,8 +40,7 @@ void TimeManager::ScheduleTimeEvent(Handle& event_handle, Thread* timetask, s64
event_handle = timetask->GetGlobalHandle();
if (nanoseconds > 0) {
ASSERT(timetask);
ASSERT(timetask->GetStatus() != ThreadStatus::Ready);
ASSERT(timetask->GetStatus() != ThreadStatus::WaitMutex);
ASSERT(timetask->GetState() != ThreadState::Runnable);
system.CoreTiming().ScheduleEvent(std::chrono::nanoseconds{nanoseconds},
time_manager_event_type, event_handle);
} else {

View File

@ -190,12 +190,6 @@ private:
void GetDeviceState(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_NFP, "called");
auto nfc_event = nfp_interface.GetNFCEvent();
if (!nfc_event->ShouldWait(&ctx.GetThread()) && !has_attached_handle) {
device_state = DeviceState::TagFound;
nfc_event->Clear();
}
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(RESULT_SUCCESS);
rb.Push<u32>(static_cast<u32>(device_state));

View File

@ -38,6 +38,10 @@ void NVFlinger::SplitVSync() {
system.RegisterHostThread();
std::string name = "yuzu:VSyncThread";
MicroProfileOnThreadCreate(name.c_str());
// Cleanup
SCOPE_EXIT({ MicroProfileOnThreadExit(); });
Common::SetCurrentThreadName(name.c_str());
Common::SetCurrentThreadPriority(Common::ThreadPriority::High);
s64 delay = 0;

View File

@ -139,9 +139,6 @@ void SM::GetService(Kernel::HLERequestContext& ctx) {
server_port->AppendPendingSession(server);
}
// Wake the threads waiting on the ServerPort
server_port->Signal();
LOG_DEBUG(Service_SM, "called service={} -> session={}", name, client->GetObjectId());
IPC::ResponseBuilder rb{ctx, 2, 0, 1, IPC::ResponseBuilder::Flags::AlwaysMoveHandles};
rb.Push(RESULT_SUCCESS);

View File

@ -14,10 +14,10 @@
#include "core/core.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/readable_event.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/kernel/svc_common.h"
#include "core/hle/kernel/thread.h"
#include "core/memory.h"
@ -116,7 +116,7 @@ QString WaitTreeText::GetText() const {
WaitTreeMutexInfo::WaitTreeMutexInfo(VAddr mutex_address, const Kernel::HandleTable& handle_table)
: mutex_address(mutex_address) {
mutex_value = Core::System::GetInstance().Memory().Read32(mutex_address);
owner_handle = static_cast<Kernel::Handle>(mutex_value & Kernel::Mutex::MutexOwnerMask);
owner_handle = static_cast<Kernel::Handle>(mutex_value & Kernel::Svc::HandleWaitMask);
owner = handle_table.Get<Kernel::Thread>(owner_handle);
}
@ -127,7 +127,7 @@ QString WaitTreeMutexInfo::GetText() const {
}
std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeMutexInfo::GetChildren() const {
const bool has_waiters = (mutex_value & Kernel::Mutex::MutexHasWaitersFlag) != 0;
const bool has_waiters = (mutex_value & Kernel::Svc::HandleWaitMask) != 0;
std::vector<std::unique_ptr<WaitTreeItem>> list;
list.push_back(std::make_unique<WaitTreeText>(tr("has waiters: %1").arg(has_waiters)));
@ -169,7 +169,8 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeCallstack::GetChildren() cons
return list;
}
WaitTreeSynchronizationObject::WaitTreeSynchronizationObject(const Kernel::SynchronizationObject& o)
WaitTreeSynchronizationObject::WaitTreeSynchronizationObject(
const Kernel::KSynchronizationObject& o)
: object(o) {}
WaitTreeSynchronizationObject::~WaitTreeSynchronizationObject() = default;
@ -188,7 +189,7 @@ QString WaitTreeSynchronizationObject::GetText() const {
}
std::unique_ptr<WaitTreeSynchronizationObject> WaitTreeSynchronizationObject::make(
const Kernel::SynchronizationObject& object) {
const Kernel::KSynchronizationObject& object) {
switch (object.GetHandleType()) {
case Kernel::HandleType::ReadableEvent:
return std::make_unique<WaitTreeEvent>(static_cast<const Kernel::ReadableEvent&>(object));
@ -202,7 +203,7 @@ std::unique_ptr<WaitTreeSynchronizationObject> WaitTreeSynchronizationObject::ma
std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeSynchronizationObject::GetChildren() const {
std::vector<std::unique_ptr<WaitTreeItem>> list;
const auto& threads = object.GetWaitingThreads();
const auto& threads = object.GetWaitingThreadsForDebugging();
if (threads.empty()) {
list.push_back(std::make_unique<WaitTreeText>(tr("waited by no thread")));
} else {
@ -211,8 +212,8 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeSynchronizationObject::GetChi
return list;
}
WaitTreeObjectList::WaitTreeObjectList(
const std::vector<std::shared_ptr<Kernel::SynchronizationObject>>& list, bool w_all)
WaitTreeObjectList::WaitTreeObjectList(const std::vector<Kernel::KSynchronizationObject*>& list,
bool w_all)
: object_list(list), wait_all(w_all) {}
WaitTreeObjectList::~WaitTreeObjectList() = default;
@ -237,8 +238,8 @@ WaitTreeThread::~WaitTreeThread() = default;
QString WaitTreeThread::GetText() const {
const auto& thread = static_cast<const Kernel::Thread&>(object);
QString status;
switch (thread.GetStatus()) {
case Kernel::ThreadStatus::Ready:
switch (thread.GetState()) {
case Kernel::ThreadState::Runnable:
if (!thread.IsPaused()) {
if (thread.WasRunning()) {
status = tr("running");
@ -249,35 +250,39 @@ QString WaitTreeThread::GetText() const {
status = tr("paused");
}
break;
case Kernel::ThreadStatus::Paused:
status = tr("paused");
case Kernel::ThreadState::Waiting:
switch (thread.GetWaitReasonForDebugging()) {
case Kernel::ThreadWaitReasonForDebugging::Sleep:
status = tr("sleeping");
break;
case Kernel::ThreadWaitReasonForDebugging::IPC:
status = tr("waiting for IPC reply");
break;
case Kernel::ThreadWaitReasonForDebugging::Synchronization:
status = tr("waiting for objects");
break;
case Kernel::ThreadWaitReasonForDebugging::ConditionVar:
status = tr("waiting for condition variable");
break;
case Kernel::ThreadWaitReasonForDebugging::Arbitration:
status = tr("waiting for address arbiter");
break;
case Kernel::ThreadWaitReasonForDebugging::Suspended:
status = tr("waiting for suspend resume");
break;
default:
status = tr("waiting");
break;
}
break;
case Kernel::ThreadStatus::WaitHLEEvent:
status = tr("waiting for HLE return");
case Kernel::ThreadState::Initialized:
status = tr("initialized");
break;
case Kernel::ThreadStatus::WaitSleep:
status = tr("sleeping");
case Kernel::ThreadState::Terminated:
status = tr("terminated");
break;
case Kernel::ThreadStatus::WaitIPC:
status = tr("waiting for IPC reply");
break;
case Kernel::ThreadStatus::WaitSynch:
status = tr("waiting for objects");
break;
case Kernel::ThreadStatus::WaitMutex:
status = tr("waiting for mutex");
break;
case Kernel::ThreadStatus::WaitCondVar:
status = tr("waiting for condition variable");
break;
case Kernel::ThreadStatus::WaitArb:
status = tr("waiting for address arbiter");
break;
case Kernel::ThreadStatus::Dormant:
status = tr("dormant");
break;
case Kernel::ThreadStatus::Dead:
status = tr("dead");
default:
status = tr("unknown");
break;
}
@ -293,8 +298,8 @@ QColor WaitTreeThread::GetColor() const {
const std::size_t color_index = IsDarkTheme() ? 1 : 0;
const auto& thread = static_cast<const Kernel::Thread&>(object);
switch (thread.GetStatus()) {
case Kernel::ThreadStatus::Ready:
switch (thread.GetState()) {
case Kernel::ThreadState::Runnable:
if (!thread.IsPaused()) {
if (thread.WasRunning()) {
return QColor(WaitTreeColors[0][color_index]);
@ -304,21 +309,24 @@ QColor WaitTreeThread::GetColor() const {
} else {
return QColor(WaitTreeColors[2][color_index]);
}
case Kernel::ThreadStatus::Paused:
return QColor(WaitTreeColors[3][color_index]);
case Kernel::ThreadStatus::WaitHLEEvent:
case Kernel::ThreadStatus::WaitIPC:
return QColor(WaitTreeColors[4][color_index]);
case Kernel::ThreadStatus::WaitSleep:
return QColor(WaitTreeColors[5][color_index]);
case Kernel::ThreadStatus::WaitSynch:
case Kernel::ThreadStatus::WaitMutex:
case Kernel::ThreadStatus::WaitCondVar:
case Kernel::ThreadStatus::WaitArb:
return QColor(WaitTreeColors[6][color_index]);
case Kernel::ThreadStatus::Dormant:
case Kernel::ThreadState::Waiting:
switch (thread.GetWaitReasonForDebugging()) {
case Kernel::ThreadWaitReasonForDebugging::IPC:
return QColor(WaitTreeColors[4][color_index]);
case Kernel::ThreadWaitReasonForDebugging::Sleep:
return QColor(WaitTreeColors[5][color_index]);
case Kernel::ThreadWaitReasonForDebugging::Synchronization:
case Kernel::ThreadWaitReasonForDebugging::ConditionVar:
case Kernel::ThreadWaitReasonForDebugging::Arbitration:
case Kernel::ThreadWaitReasonForDebugging::Suspended:
return QColor(WaitTreeColors[6][color_index]);
break;
default:
return QColor(WaitTreeColors[3][color_index]);
}
case Kernel::ThreadState::Initialized:
return QColor(WaitTreeColors[7][color_index]);
case Kernel::ThreadStatus::Dead:
case Kernel::ThreadState::Terminated:
return QColor(WaitTreeColors[8][color_index]);
default:
return WaitTreeItem::GetColor();
@ -354,11 +362,11 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeThread::GetChildren() const {
list.push_back(std::make_unique<WaitTreeText>(tr("thread id = %1").arg(thread.GetThreadID())));
list.push_back(std::make_unique<WaitTreeText>(tr("priority = %1(current) / %2(normal)")
.arg(thread.GetPriority())
.arg(thread.GetNominalPriority())));
.arg(thread.GetBasePriority())));
list.push_back(std::make_unique<WaitTreeText>(
tr("last running ticks = %1").arg(thread.GetLastScheduledTick())));
const VAddr mutex_wait_address = thread.GetMutexWaitAddress();
const VAddr mutex_wait_address = thread.GetMutexWaitAddressForDebugging();
if (mutex_wait_address != 0) {
const auto& handle_table = thread.GetOwnerProcess()->GetHandleTable();
list.push_back(std::make_unique<WaitTreeMutexInfo>(mutex_wait_address, handle_table));
@ -366,9 +374,11 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeThread::GetChildren() const {
list.push_back(std::make_unique<WaitTreeText>(tr("not waiting for mutex")));
}
if (thread.GetStatus() == Kernel::ThreadStatus::WaitSynch) {
list.push_back(std::make_unique<WaitTreeObjectList>(thread.GetSynchronizationObjects(),
thread.IsWaitingSync()));
if (thread.GetState() == Kernel::ThreadState::Waiting &&
thread.GetWaitReasonForDebugging() ==
Kernel::ThreadWaitReasonForDebugging::Synchronization) {
list.push_back(std::make_unique<WaitTreeObjectList>(thread.GetWaitObjectsForDebugging(),
thread.IsCancellable()));
}
list.push_back(std::make_unique<WaitTreeCallstack>(thread));
@ -380,7 +390,7 @@ WaitTreeEvent::WaitTreeEvent(const Kernel::ReadableEvent& object)
: WaitTreeSynchronizationObject(object) {}
WaitTreeEvent::~WaitTreeEvent() = default;
WaitTreeThreadList::WaitTreeThreadList(const std::vector<std::shared_ptr<Kernel::Thread>>& list)
WaitTreeThreadList::WaitTreeThreadList(const std::vector<Kernel::Thread*>& list)
: thread_list(list) {}
WaitTreeThreadList::~WaitTreeThreadList() = default;

View File

@ -18,8 +18,8 @@ class EmuThread;
namespace Kernel {
class HandleTable;
class KSynchronizationObject;
class ReadableEvent;
class SynchronizationObject;
class Thread;
} // namespace Kernel
@ -102,30 +102,29 @@ private:
class WaitTreeSynchronizationObject : public WaitTreeExpandableItem {
Q_OBJECT
public:
explicit WaitTreeSynchronizationObject(const Kernel::SynchronizationObject& object);
explicit WaitTreeSynchronizationObject(const Kernel::KSynchronizationObject& object);
~WaitTreeSynchronizationObject() override;
static std::unique_ptr<WaitTreeSynchronizationObject> make(
const Kernel::SynchronizationObject& object);
const Kernel::KSynchronizationObject& object);
QString GetText() const override;
std::vector<std::unique_ptr<WaitTreeItem>> GetChildren() const override;
protected:
const Kernel::SynchronizationObject& object;
const Kernel::KSynchronizationObject& object;
};
class WaitTreeObjectList : public WaitTreeExpandableItem {
Q_OBJECT
public:
WaitTreeObjectList(const std::vector<std::shared_ptr<Kernel::SynchronizationObject>>& list,
bool wait_all);
WaitTreeObjectList(const std::vector<Kernel::KSynchronizationObject*>& list, bool wait_all);
~WaitTreeObjectList() override;
QString GetText() const override;
std::vector<std::unique_ptr<WaitTreeItem>> GetChildren() const override;
private:
const std::vector<std::shared_ptr<Kernel::SynchronizationObject>>& object_list;
const std::vector<Kernel::KSynchronizationObject*>& object_list;
bool wait_all;
};
@ -150,14 +149,14 @@ public:
class WaitTreeThreadList : public WaitTreeExpandableItem {
Q_OBJECT
public:
explicit WaitTreeThreadList(const std::vector<std::shared_ptr<Kernel::Thread>>& list);
explicit WaitTreeThreadList(const std::vector<Kernel::Thread*>& list);
~WaitTreeThreadList() override;
QString GetText() const override;
std::vector<std::unique_ptr<WaitTreeItem>> GetChildren() const override;
private:
const std::vector<std::shared_ptr<Kernel::Thread>>& thread_list;
const std::vector<Kernel::Thread*>& thread_list;
};
class WaitTreeModel : public QAbstractItemModel {