yuzu/src/video_core/memory_manager.cpp
2022-10-06 21:00:51 +02:00

411 lines
14 KiB
C++

// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/memory.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
namespace Tegra {
MemoryManager::MemoryManager(Core::System& system_, u64 address_space_bits_, u64 page_bits_)
: system{system_}, address_space_bits{address_space_bits_}, page_bits{page_bits_}, entries{},
page_table{address_space_bits, address_space_bits + page_bits - 38, page_bits} {
address_space_size = 1ULL << address_space_bits;
allocate_start = address_space_bits > 32 ? 1ULL << 32 : 0;
page_size = 1ULL << page_bits;
page_mask = page_size - 1ULL;
const u64 page_table_bits = address_space_bits - cpu_page_bits;
const u64 page_table_size = 1ULL << page_table_bits;
page_table_mask = page_table_size - 1;
entries.resize(page_table_size / 32, 0);
}
MemoryManager::~MemoryManager() = default;
MemoryManager::EntryType MemoryManager::GetEntry(size_t position) const {
position = position >> page_bits;
const u64 entry_mask = entries[position / 32];
const size_t sub_index = position % 32;
return static_cast<EntryType>((entry_mask >> (2 * sub_index)) & 0x03ULL);
}
void MemoryManager::SetEntry(size_t position, MemoryManager::EntryType entry) {
position = position >> page_bits;
const u64 entry_mask = entries[position / 32];
const size_t sub_index = position % 32;
entries[position / 32] =
(~(3ULL << sub_index * 2) & entry_mask) | (static_cast<u64>(entry) << sub_index * 2);
}
template <MemoryManager::EntryType entry_type>
GPUVAddr MemoryManager::PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr,
size_t size) {
u64 remaining_size{size};
if constexpr (entry_type == EntryType::Mapped) {
page_table.ReserveRange(gpu_addr, size);
}
for (u64 offset{}; offset < size; offset += page_size) {
const GPUVAddr current_gpu_addr = gpu_addr + offset;
SetEntry(current_gpu_addr, entry_type);
if constexpr (entry_type == EntryType::Mapped) {
const VAddr current_cpu_addr = cpu_addr + offset;
const auto index = PageEntryIndex(current_gpu_addr);
page_table[index] = static_cast<u32>(current_cpu_addr >> 12ULL);
}
remaining_size -= page_size;
}
return gpu_addr;
}
void MemoryManager::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) {
rasterizer = rasterizer_;
}
GPUVAddr MemoryManager::Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size) {
return PageTableOp<EntryType::Mapped>(gpu_addr, cpu_addr, size);
}
GPUVAddr MemoryManager::MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align) {
return Map(cpu_addr, *FindFreeRange(size, align), size);
}
GPUVAddr MemoryManager::MapAllocate32(VAddr cpu_addr, std::size_t size) {
const std::optional<GPUVAddr> gpu_addr = FindFreeRange(size, 1, true);
ASSERT(gpu_addr);
return Map(cpu_addr, *gpu_addr, size);
}
void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
if (size == 0) {
return;
}
const auto submapped_ranges = GetSubmappedRange(gpu_addr, size);
for (const auto& [map_addr, map_size] : submapped_ranges) {
// Flush and invalidate through the GPU interface, to be asynchronous if possible.
const std::optional<VAddr> cpu_addr = GpuToCpuAddress(map_addr);
ASSERT(cpu_addr);
rasterizer->UnmapMemory(*cpu_addr, map_size);
}
PageTableOp<EntryType::Free>(gpu_addr, 0, size);
}
std::optional<GPUVAddr> MemoryManager::AllocateFixed(GPUVAddr gpu_addr, std::size_t size) {
for (u64 offset{}; offset < size; offset += page_size) {
if (GetEntry(gpu_addr + offset) != EntryType::Free) {
return std::nullopt;
}
}
return PageTableOp<EntryType::Reserved>(gpu_addr, 0, size);
}
GPUVAddr MemoryManager::Allocate(std::size_t size, std::size_t align) {
return *AllocateFixed(*FindFreeRange(size, align), size);
}
std::optional<GPUVAddr> MemoryManager::FindFreeRange(std::size_t size, std::size_t align,
bool start_32bit_address) const {
if (!align) {
align = page_size;
} else {
align = Common::AlignUp(align, page_size);
}
u64 available_size{};
GPUVAddr gpu_addr{allocate_start};
while (gpu_addr + available_size < address_space_size) {
if (GetEntry(gpu_addr + available_size) == EntryType::Free) {
available_size += page_size;
if (available_size >= size) {
return gpu_addr;
}
} else {
gpu_addr += available_size + page_size;
available_size = 0;
const auto remainder{gpu_addr % align};
if (remainder) {
gpu_addr = (gpu_addr - remainder) + align;
}
}
}
return std::nullopt;
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
if (GetEntry(gpu_addr) != EntryType::Mapped) {
return std::nullopt;
}
const VAddr cpu_addr_base = static_cast<VAddr>(page_table[PageEntryIndex(gpu_addr)]) << 12ULL;
return cpu_addr_base + (gpu_addr & page_mask);
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr, std::size_t size) const {
size_t page_index{addr >> page_bits};
const size_t page_last{(addr + size + page_size - 1) >> page_bits};
while (page_index < page_last) {
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (page_addr && *page_addr != 0) {
return page_addr;
}
++page_index;
}
return std::nullopt;
}
template <typename T>
T MemoryManager::Read(GPUVAddr addr) const {
if (auto page_pointer{GetPointer(addr)}; page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
std::memcpy(&value, page_pointer, sizeof(T));
return value;
}
ASSERT(false);
return {};
}
template <typename T>
void MemoryManager::Write(GPUVAddr addr, T data) {
if (auto page_pointer{GetPointer(addr)}; page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(page_pointer, &data, sizeof(T));
return;
}
ASSERT(false);
}
template u8 MemoryManager::Read<u8>(GPUVAddr addr) const;
template u16 MemoryManager::Read<u16>(GPUVAddr addr) const;
template u32 MemoryManager::Read<u32>(GPUVAddr addr) const;
template u64 MemoryManager::Read<u64>(GPUVAddr addr) const;
template void MemoryManager::Write<u8>(GPUVAddr addr, u8 data);
template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data);
template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data);
template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data);
u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) {
const auto address{GpuToCpuAddress(gpu_addr)};
if (!address) {
return {};
}
return system.Memory().GetPointer(*address);
}
const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const {
const auto address{GpuToCpuAddress(gpu_addr)};
if (!address) {
return {};
}
return system.Memory().GetPointer(*address);
}
void MemoryManager::ReadBlockImpl(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size,
bool is_safe) const {
std::size_t remaining_size{size};
std::size_t page_index{gpu_src_addr >> page_bits};
std::size_t page_offset{gpu_src_addr & page_mask};
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (page_addr) {
const auto src_addr{*page_addr + page_offset};
if (is_safe) {
// Flush must happen on the rasterizer interface, such that memory is always
// synchronous when it is read (even when in asynchronous GPU mode).
// Fixes Dead Cells title menu.
rasterizer->FlushRegion(src_addr, copy_amount);
}
system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
} else {
std::memset(dest_buffer, 0, copy_amount);
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const {
ReadBlockImpl(gpu_src_addr, dest_buffer, size, true);
}
void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer,
const std::size_t size) const {
ReadBlockImpl(gpu_src_addr, dest_buffer, size, false);
}
void MemoryManager::WriteBlockImpl(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size,
bool is_safe) {
std::size_t remaining_size{size};
std::size_t page_index{gpu_dest_addr >> page_bits};
std::size_t page_offset{gpu_dest_addr & page_mask};
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (page_addr) {
const auto dest_addr{*page_addr + page_offset};
if (is_safe) {
// Invalidate must happen on the rasterizer interface, such that memory is always
// synchronous when it is written (even when in asynchronous GPU mode).
rasterizer->InvalidateRegion(dest_addr, copy_amount);
}
system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) {
WriteBlockImpl(gpu_dest_addr, src_buffer, size, true);
}
void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer,
std::size_t size) {
WriteBlockImpl(gpu_dest_addr, src_buffer, size, false);
}
void MemoryManager::FlushRegion(GPUVAddr gpu_addr, size_t size) const {
size_t remaining_size{size};
size_t page_index{gpu_addr >> page_bits};
size_t page_offset{gpu_addr & page_mask};
while (remaining_size > 0) {
const size_t num_bytes{std::min(page_size - page_offset, remaining_size)};
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
rasterizer->FlushRegion(*page_addr + page_offset, num_bytes);
}
++page_index;
page_offset = 0;
remaining_size -= num_bytes;
}
}
void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size) {
std::vector<u8> tmp_buffer(size);
ReadBlock(gpu_src_addr, tmp_buffer.data(), size);
// The output block must be flushed in case it has data modified from the GPU.
// Fixes NPC geometry in Zombie Panic in Wonderland DX
FlushRegion(gpu_dest_addr, size);
WriteBlock(gpu_dest_addr, tmp_buffer.data(), size);
}
bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const {
const auto cpu_addr{GpuToCpuAddress(gpu_addr)};
if (!cpu_addr) {
return false;
}
const std::size_t page{(*cpu_addr & Core::Memory::YUZU_PAGEMASK) + size};
return page <= Core::Memory::YUZU_PAGESIZE;
}
bool MemoryManager::IsContinousRange(GPUVAddr gpu_addr, std::size_t size) const {
size_t page_index{gpu_addr >> page_bits};
const size_t page_last{(gpu_addr + size + page_size - 1) >> page_bits};
std::optional<VAddr> old_page_addr{};
while (page_index != page_last) {
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (!page_addr || *page_addr == 0) {
return false;
}
if (old_page_addr) {
if (*old_page_addr + page_size != *page_addr) {
return false;
}
}
old_page_addr = page_addr;
++page_index;
}
return true;
}
bool MemoryManager::IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) const {
size_t page_index{gpu_addr >> page_bits};
const size_t page_last{(gpu_addr + size + page_size - 1) >> page_bits};
while (page_index < page_last) {
if (GetEntry(page_index << page_bits) == EntryType::Free) {
return false;
}
++page_index;
}
return true;
}
std::vector<std::pair<GPUVAddr, std::size_t>> MemoryManager::GetSubmappedRange(
GPUVAddr gpu_addr, std::size_t size) const {
std::vector<std::pair<GPUVAddr, std::size_t>> result{};
size_t page_index{gpu_addr >> page_bits};
size_t remaining_size{size};
size_t page_offset{gpu_addr & page_mask};
std::optional<std::pair<GPUVAddr, std::size_t>> last_segment{};
std::optional<VAddr> old_page_addr{};
const auto extend_size = [this, &last_segment, &page_index, &page_offset](std::size_t bytes) {
if (!last_segment) {
const GPUVAddr new_base_addr = (page_index << page_bits) + page_offset;
last_segment = {new_base_addr, bytes};
} else {
last_segment->second += bytes;
}
};
const auto split = [&last_segment, &result] {
if (last_segment) {
result.push_back(*last_segment);
last_segment = std::nullopt;
}
};
while (remaining_size > 0) {
const size_t num_bytes{std::min(page_size - page_offset, remaining_size)};
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (!page_addr || *page_addr == 0) {
split();
} else if (old_page_addr) {
if (*old_page_addr + page_size != *page_addr) {
split();
}
extend_size(num_bytes);
} else {
extend_size(num_bytes);
}
++page_index;
page_offset = 0;
remaining_size -= num_bytes;
old_page_addr = page_addr;
}
split();
return result;
}
} // namespace Tegra