yuzu/src/common/math_util.cpp

212 lines
4.7 KiB
C++

// Copyright 2013 Dolphin Emulator Project / 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/common.h"
#include "common/math_util.h"
#include <numeric> // Necessary on OS X, but not Linux
namespace MathUtil
{
u32 ClassifyDouble(double dvalue)
{
// TODO: Optimize the below to be as fast as possible.
IntDouble value;
value.d = dvalue;
u64 sign = value.i & DOUBLE_SIGN;
u64 exp = value.i & DOUBLE_EXP;
if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP)
{
// Nice normalized number.
return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
}
else
{
u64 mantissa = value.i & DOUBLE_FRAC;
if (mantissa)
{
if (exp)
{
return PPC_FPCLASS_QNAN;
}
else
{
// Denormalized number.
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
}
}
else if (exp)
{
//Infinite
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
}
else
{
//Zero
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
}
}
}
u32 ClassifyFloat(float fvalue)
{
// TODO: Optimize the below to be as fast as possible.
IntFloat value;
value.f = fvalue;
u32 sign = value.i & FLOAT_SIGN;
u32 exp = value.i & FLOAT_EXP;
if (exp > FLOAT_ZERO && exp < FLOAT_EXP)
{
// Nice normalized number.
return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
}
else
{
u32 mantissa = value.i & FLOAT_FRAC;
if (mantissa)
{
if (exp)
{
return PPC_FPCLASS_QNAN; // Quiet NAN
}
else
{
// Denormalized number.
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
}
}
else if (exp)
{
// Infinite
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
}
else
{
//Zero
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
}
}
}
} // namespace
inline void MatrixMul(int n, const float *a, const float *b, float *result)
{
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
float temp = 0;
for (int k = 0; k < n; ++k)
{
temp += a[i * n + k] * b[k * n + j];
}
result[i * n + j] = temp;
}
}
}
// Calculate sum of a float list
float MathFloatVectorSum(const std::vector<float>& Vec)
{
return std::accumulate(Vec.begin(), Vec.end(), 0.0f);
}
void Matrix33::LoadIdentity(Matrix33 &mtx)
{
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = 1.0f;
mtx.data[4] = 1.0f;
mtx.data[8] = 1.0f;
}
void Matrix33::RotateX(Matrix33 &mtx, float rad)
{
float s = sin(rad);
float c = cos(rad);
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = 1;
mtx.data[4] = c;
mtx.data[5] = -s;
mtx.data[7] = s;
mtx.data[8] = c;
}
void Matrix33::RotateY(Matrix33 &mtx, float rad)
{
float s = sin(rad);
float c = cos(rad);
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = c;
mtx.data[2] = s;
mtx.data[4] = 1;
mtx.data[6] = -s;
mtx.data[8] = c;
}
void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result)
{
MatrixMul(3, a.data, b.data, result.data);
}
void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3])
{
for (int i = 0; i < 3; ++i) {
result[i] = 0;
for (int k = 0; k < 3; ++k) {
result[i] += a.data[i * 3 + k] * vec[k];
}
}
}
void Matrix44::LoadIdentity(Matrix44 &mtx)
{
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = 1.0f;
mtx.data[5] = 1.0f;
mtx.data[10] = 1.0f;
mtx.data[15] = 1.0f;
}
void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33)
{
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
mtx.data[i * 4 + j] = m33.data[i * 3 + j];
}
}
for (int i = 0; i < 3; ++i)
{
mtx.data[i * 4 + 3] = 0;
mtx.data[i + 12] = 0;
}
mtx.data[15] = 1.0f;
}
void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16])
{
for(int i = 0; i < 16; ++i) {
mtx.data[i] = mtxArray[i];
}
}
void Matrix44::Translate(Matrix44 &mtx, const float vec[3])
{
LoadIdentity(mtx);
mtx.data[3] = vec[0];
mtx.data[7] = vec[1];
mtx.data[11] = vec[2];
}
void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result)
{
MatrixMul(4, a.data, b.data, result.data);
}