Merge pull request #8650 from Kelebek1/vsync
[Coretiming/NVNFlinger] Improve multi-core vsync timing, and core timing accuracy
This commit is contained in:
commit
9c32f29af1
|
@ -54,6 +54,10 @@ public:
|
|||
is_set = false;
|
||||
}
|
||||
|
||||
[[nodiscard]] bool IsSet() {
|
||||
return is_set;
|
||||
}
|
||||
|
||||
private:
|
||||
std::condition_variable condvar;
|
||||
std::mutex mutex;
|
||||
|
|
|
@ -134,6 +134,7 @@ void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
|
|||
std::chrono::nanoseconds resched_time,
|
||||
const std::shared_ptr<EventType>& event_type,
|
||||
std::uintptr_t user_data, bool absolute_time) {
|
||||
{
|
||||
std::scoped_lock scope{basic_lock};
|
||||
const auto next_time{absolute_time ? start_time : GetGlobalTimeNs() + start_time};
|
||||
|
||||
|
@ -141,6 +142,9 @@ void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
|
|||
Event{next_time.count(), event_fifo_id++, user_data, event_type, resched_time.count()});
|
||||
|
||||
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||
}
|
||||
|
||||
event.Set();
|
||||
}
|
||||
|
||||
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
|
||||
|
@ -229,17 +233,17 @@ std::optional<s64> CoreTiming::Advance() {
|
|||
basic_lock.lock();
|
||||
|
||||
if (evt.reschedule_time != 0) {
|
||||
// If this event was scheduled into a pause, its time now is going to be way behind.
|
||||
// Re-set this event to continue from the end of the pause.
|
||||
auto next_time{evt.time + evt.reschedule_time};
|
||||
if (evt.time < pause_end_time) {
|
||||
next_time = pause_end_time + evt.reschedule_time;
|
||||
}
|
||||
|
||||
const auto next_schedule_time{new_schedule_time.has_value()
|
||||
? new_schedule_time.value().count()
|
||||
: evt.reschedule_time};
|
||||
|
||||
// If this event was scheduled into a pause, its time now is going to be way behind.
|
||||
// Re-set this event to continue from the end of the pause.
|
||||
auto next_time{evt.time + next_schedule_time};
|
||||
if (evt.time < pause_end_time) {
|
||||
next_time = pause_end_time + next_schedule_time;
|
||||
}
|
||||
|
||||
event_queue.emplace_back(
|
||||
Event{next_time, event_fifo_id++, evt.user_data, evt.type, next_schedule_time});
|
||||
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||
|
@ -250,8 +254,7 @@ std::optional<s64> CoreTiming::Advance() {
|
|||
}
|
||||
|
||||
if (!event_queue.empty()) {
|
||||
const s64 next_time = event_queue.front().time - global_timer;
|
||||
return next_time;
|
||||
return event_queue.front().time;
|
||||
} else {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
@ -264,11 +267,29 @@ void CoreTiming::ThreadLoop() {
|
|||
paused_set = false;
|
||||
const auto next_time = Advance();
|
||||
if (next_time) {
|
||||
if (*next_time > 0) {
|
||||
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
|
||||
event.WaitFor(next_time_ns);
|
||||
// There are more events left in the queue, wait until the next event.
|
||||
const auto wait_time = *next_time - GetGlobalTimeNs().count();
|
||||
if (wait_time > 0) {
|
||||
// Assume a timer resolution of 1ms.
|
||||
static constexpr s64 TimerResolutionNS = 1000000;
|
||||
|
||||
// Sleep in discrete intervals of the timer resolution, and spin the rest.
|
||||
const auto sleep_time = wait_time - (wait_time % TimerResolutionNS);
|
||||
if (sleep_time > 0) {
|
||||
event.WaitFor(std::chrono::nanoseconds(sleep_time));
|
||||
}
|
||||
|
||||
while (!paused && !event.IsSet() && GetGlobalTimeNs().count() < *next_time) {
|
||||
// Yield to reduce thread starvation.
|
||||
std::this_thread::yield();
|
||||
}
|
||||
|
||||
if (event.IsSet()) {
|
||||
event.Reset();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Queue is empty, wait until another event is scheduled and signals us to continue.
|
||||
wait_set = true;
|
||||
event.Wait();
|
||||
}
|
||||
|
|
|
@ -38,20 +38,16 @@ void NVFlinger::SplitVSync(std::stop_token stop_token) {
|
|||
|
||||
Common::SetCurrentThreadName(name.c_str());
|
||||
Common::SetCurrentThreadPriority(Common::ThreadPriority::High);
|
||||
s64 delay = 0;
|
||||
|
||||
while (!stop_token.stop_requested()) {
|
||||
vsync_signal.wait(false);
|
||||
vsync_signal.store(false);
|
||||
|
||||
guard->lock();
|
||||
const s64 time_start = system.CoreTiming().GetGlobalTimeNs().count();
|
||||
|
||||
Compose();
|
||||
const auto ticks = GetNextTicks();
|
||||
const s64 time_end = system.CoreTiming().GetGlobalTimeNs().count();
|
||||
const s64 time_passed = time_end - time_start;
|
||||
const s64 next_time = std::max<s64>(0, ticks - time_passed - delay);
|
||||
|
||||
guard->unlock();
|
||||
if (next_time > 0) {
|
||||
std::this_thread::sleep_for(std::chrono::nanoseconds{next_time});
|
||||
}
|
||||
delay = (system.CoreTiming().GetGlobalTimeNs().count() - time_end) - next_time;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -66,27 +62,41 @@ NVFlinger::NVFlinger(Core::System& system_, HosBinderDriverServer& hos_binder_dr
|
|||
guard = std::make_shared<std::mutex>();
|
||||
|
||||
// Schedule the screen composition events
|
||||
composition_event = Core::Timing::CreateEvent(
|
||||
multi_composition_event = Core::Timing::CreateEvent(
|
||||
"ScreenComposition",
|
||||
[this](std::uintptr_t, s64 time,
|
||||
std::chrono::nanoseconds ns_late) -> std::optional<std::chrono::nanoseconds> {
|
||||
vsync_signal.store(true);
|
||||
vsync_signal.notify_all();
|
||||
return std::chrono::nanoseconds(GetNextTicks());
|
||||
});
|
||||
|
||||
single_composition_event = Core::Timing::CreateEvent(
|
||||
"ScreenComposition",
|
||||
[this](std::uintptr_t, s64 time,
|
||||
std::chrono::nanoseconds ns_late) -> std::optional<std::chrono::nanoseconds> {
|
||||
const auto lock_guard = Lock();
|
||||
Compose();
|
||||
|
||||
return std::max(std::chrono::nanoseconds::zero(),
|
||||
std::chrono::nanoseconds(GetNextTicks()) - ns_late);
|
||||
return std::chrono::nanoseconds(GetNextTicks());
|
||||
});
|
||||
|
||||
if (system.IsMulticore()) {
|
||||
system.CoreTiming().ScheduleLoopingEvent(frame_ns, frame_ns, multi_composition_event);
|
||||
vsync_thread = std::jthread([this](std::stop_token token) { SplitVSync(token); });
|
||||
} else {
|
||||
system.CoreTiming().ScheduleLoopingEvent(frame_ns, frame_ns, composition_event);
|
||||
system.CoreTiming().ScheduleLoopingEvent(frame_ns, frame_ns, single_composition_event);
|
||||
}
|
||||
}
|
||||
|
||||
NVFlinger::~NVFlinger() {
|
||||
if (!system.IsMulticore()) {
|
||||
system.CoreTiming().UnscheduleEvent(composition_event, 0);
|
||||
if (system.IsMulticore()) {
|
||||
system.CoreTiming().UnscheduleEvent(multi_composition_event, {});
|
||||
vsync_thread.request_stop();
|
||||
vsync_signal.store(true);
|
||||
vsync_signal.notify_all();
|
||||
} else {
|
||||
system.CoreTiming().UnscheduleEvent(single_composition_event, {});
|
||||
}
|
||||
|
||||
for (auto& display : displays) {
|
||||
|
|
|
@ -126,12 +126,15 @@ private:
|
|||
u32 swap_interval = 1;
|
||||
|
||||
/// Event that handles screen composition.
|
||||
std::shared_ptr<Core::Timing::EventType> composition_event;
|
||||
std::shared_ptr<Core::Timing::EventType> multi_composition_event;
|
||||
std::shared_ptr<Core::Timing::EventType> single_composition_event;
|
||||
|
||||
std::shared_ptr<std::mutex> guard;
|
||||
|
||||
Core::System& system;
|
||||
|
||||
std::atomic<bool> vsync_signal;
|
||||
|
||||
std::jthread vsync_thread;
|
||||
|
||||
KernelHelpers::ServiceContext service_context;
|
||||
|
|
Loading…
Reference in New Issue